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ABSTRACT

Real-time embedded systems are often employed in safety-critical fields such as avion-

ics, automotive, and medical equipment, where stringent timing constraints are essential.

Due to these constraints, tasks within the system are executed according to a predictable

timeline. This dissertation examines the timing of side-channel attacks that exploit this pre-

dictability in real-time systems and proposes practical solutions for mitigating such threats.

The research delves into side-channel attacks in real-time environments. The novel attack

model introduced in the dissertation bypasses state-of-the-art side-channel defense in hi-

erarchical real-time systems. The evaluation of this attack demonstrates its effectiveness,

enabling precise targeting of victims with a precision exceeding 70% under normal system

load.

The dissertation also focuses on improving the security posture of existing real-time op-

erating systems. It presents a strategy for updating legacy software components to bolster

the security posture of critical infrastructure against side-channel attacks that target known

vulnerabilities within the code. This strategy employs a modularization-based approach,

allowing legacy systems to coexist with upgraded software components during the transi-

tion period, facilitating the integration of security updates for legacy components without

necessitating significant system downtime. Additionally, the dissertation outlines recov-

ery techniques designed to ensure the timely restoration of the system to a functional state
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following a successful attack. The theoretical analysis establishes timing bounds on the

recovery process and defines the feasibility conditions. The results of this dissertation have

led to the development of software packages utilized by prominent institutions, including

specific Department of Energy national laboratories. The artifacts generated from this re-

search have been open-sourced and made available to the public for free use.
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CHAPTER I

INTRODUCTION

Real-time embedded systems (RTES) represent a specialized subclass of computing

systems characterized by stringent constraints on timing parameters. Frequently deployed

in safety-critical domains, such as automotive applications, aerospace software, and med-

ical devices, these systems require a timely execution of tasks to avert potentially catas-

trophic outcomes. The proliferation of RTES within essential infrastructures—including

transportation, energy, and defense—exacerbates their vulnerability to cyber threats. The

advent of the Internet of Things (IoT) further compounds this risk, as RTES interface with

diverse internal and external networks, heightening susceptibility to remote attacks. Prior

research has indicated that conventional security mechanisms designed for general-purpose

systems often prove unsuitable for RTES, primarily due to their rigorous timing require-

ments and resource constraints. Consequently, any proposed security enhancements neces-

sitate comprehensive timing and overhead analyses before integration into existing frame-

works [2].
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Historically, RTES designs have prioritized functionality over security considera-

tions, resulting in numerous legacy systems with ambiguous security postures. The land-

scape of potential vulnerabilities, attack vectors, and defensive strategies related to RTES

remains inadequately understood. In critical environments, the challenges of upgrading

these legacy systems are significant, as transitioning to modern implementations demands

extensive engineering efforts and may inadvertently introduce new vulnerabilities along-

side potential reliability issues. This dissertation investigates the security challenges intrin-

sic to RTES, focusing on timing side-channel attacks that exploit known vulnerabilities and

threaten these systems’ confidentiality, integrity, and availability—collectively referred to

as the CIA triad.

The vulnerability associated with timing predictability in RTES has been extensively

documented in the literature. While existing studies advocate for randomization-based

techniques to mitigate the likelihood and impact of such attacks, these methodologies have

proven ineffective due to RTES’s intrinsic timing and resource constraints. This research

critically evaluates the limitations of current defenses and introduces a novel timing-based

side-channel attack capable of bypassing these defense techniques.

The dissertation also establishes viable system recovery techniques and engineering

solutions that can enhance and facilitate the recovery of systems under attack. The pre-

sented work has been evaluated from two perspectives: the repercussions of the attacks

and the system overhead associated with the proposed defenses. The artifacts developed

throughout this dissertation are available under open source license, promoting unrestricted

access.
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1.1 Research Questions

This dissertation focuses on the following three research questions and addresses

these questions respectively in Chapters III, IV, and V.

RQ1 What methodologies can attackers employ to evade defensive measures against tim-

ing side-channels in real-time systems?

RQ2 What techniques can facilitate upgrading legacy software components with minimal

system downtime?

RQ3 What strategies can be employed to restore the system to a trusted state within an

acceptable time frame?

1.2 Research Contributions

This dissertation systematically addresses the research questions outlined. Chap-

ter III explores RQ1 through a novel attack approach that alters the execution parameters

of adversary tasks to enhance the side-channel inference capabilities of target victim tasks.

The attack, referred to as NOSYNEIGHBOR, proves effective against the prevailing sched-

ule randomization techniques. An evaluation of NOSYNEIGHBOR is conducted using a

discrete task simulator alongside a case study highlighting its efficacy against the state-of-

the-art defense technique BLINDER [3].

Upgrading outdated software components and adhering to updated security proto-

cols is paramount for mitigating the impact of attacks and strengthening the security pos-

ture of systems. This necessity motivates RQ2, which is addressed in Chapter IV through a
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modularization-based strategy for upgrading components within a monolithic kernel widely

utilized in critical infrastructure sectors. The presented technique enables the continued op-

eration of legacy software components while facilitating the testing and evaluating new

components without causing significant system downtime. This chapter systematically

migrated over 270, 000 lines of code, which were made freely available as open source

libraries [4, 5]. These libraries were contributed to the RTEMS project that multiple es-

teemed institutions use in safety-critical domains. Numerous national laboratories have ac-

tively leveraged the research’s outcomes to transition to newer software components within

their existing infrastructures.

Recognizing that no system can achieve complete security, it is crucial to implement

recovery mechanisms that restore systems to a functional state post-attack. Chapter V

presents a secure boot-based recovery technique that allows the Real-Time Embedded Sys-

tems (RTES) to be periodically rebooted into a trusted state. This chapter addresses RQ3

by presenting a classical response time analysis incorporating the overheads due to peri-

odic recovery and secure reboot. The theoretical analysis applies to any periodic recovery

methodology in a real-time system. The response time analysis shows minimal impact on

the task schedulability, proving the feasibility of the secure boot in any real-time system

with a periodic recovery mechanism. The theoretical insights offered here can also inform

future research evaluating the feasibility of alternative periodic recovery techniques.



CHAPTER II

RELATED WORK

2.1 Side-Channel Attacks in Real-Time Embedded Systems

Side-channel attacks are confidentiality attacks that exploit a system’s behavior to

leak sensitive information. These attacks are frequently combined with other attacks that

utilize the confidential information obtained through side channels. In RTES, attackers can

exploit timing information from an executing process to carry out additional attacks, such

as denial of service (DoS). This section discusses various existing side-channel attacks and

their impact on RTES.

2.1.1 Parameter Inference.

In ScheduLeak [6, 7], the attacker leverages an unmanned aerial vehicle’s idle task

to collect observations about the system’s schedule from which the busy intervals and the

victim task’s initial offset and future arrival times are inferred. Hounsinou et al. [8] recorded

controller area network (CAN) traffic to reconstruct the CAN schedule using the CAN

response time analysis. They identified patterns of CAN messages that are expected to
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precede the victim to queue the attack message with heuristics to improve the success of

their attack. Others have shown how circular auto-correlation, fast Fourier Transform [9],

and periodogram [10] can infer task parameters from execution traces. These approaches

differ in accuracy, particularly when faced with system uncertainties like release jitter, and

have not been implemented in hierarchical systems. Furthermore, the accuracy of these

techniques is static, meaning they conduct a side-channel inference only once at the end,

which makes them a transient attack. In contrast, the NOSYNEIGHBOR attack introduced

by this dissertation adjusts attack parameters and enhances inference accuracy over time.

Therefore, NOSYNEIGHBOR can be classified as a persistent attack.

2.1.2 Randomization-based Defense Techniques.

Schedule randomization [11–14] aims to reduce the apparent determinism of real-

time systems to prevent an adversary from deducing timing parameters. However, Nasri

et al. [15] argued that these approaches might not provide enough protection while stat-

ing that isolation techniques (including virtualization) might directly solve the security-

relevant problems of schedule information leakage. A similar line of work, Blinder [3] and

TimeDice [16], use randomization-based solutions to mitigate the orchestration of multi-

ple tasks. However, through a proof-of-concept implementation, we demonstrate that the

NOSYNEIGHBOR can successfully infer the victim’s timing even in the presence of these

defense techniques. NOSYNEIGHBOR’s design makes it resilient to simple randomization

due to the real-time workloads’ contained deadline that limits the randomization-based de-

fense’s impact.
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2.2 Real-Time Recovery1

Trusted computing aims to protect systems against integrity attacks by providing an

outlet for a root of trust, uniquely identifying a platform. The Simplex architecture has

been used for fault tolerance in control systems utilizing untrusted logic and an isolated

safety controller. Approaches based on System-level Simplex architecture [17] and restart-

based (both revival [18, 19] and rejuvenation [20, 21]) approaches run the safety controller

and decision module on dedicated hardware. These methods add a safety guarantee to the

Simplex-based architecture.

Using System-level Simplex architecture, Abdi et al. [22] proposed a restart-based

recovery approach for the complex subsystem when software faults are detected. Further,

Abdi et al. [20,21,23] proposed a framework to periodically restart the platform to improve

the safety of real-time systems and provide a system-wide restart-based approach that pro-

vides a formal guarantee of system safety. However, these works do not provide proof of

timing guarantee and feasibility analysis for real-time systems. In contrast, we provide a

framework for the feasibility analysis of restart-based recovery and integrate secure boot

into the restart to guarantee a trusted system state after every restart.

Romagnoli et al. [24] proposed a recovery technique based on software refresh that

guarantees the controller integrity and safety. However, recovery does not prevent attacks

from occurring again. We address this shortcoming by adding a secure boot as a part of

every restart. We use the simplex-based architecture [25–28] using decision procedures that

1Portions of this section were published in [1]
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provide fault-tolerant and low-overhead solutions to choose control commands between the

complex controller and safety controller to improve system reliability.

Diversification-based security leverages the system’s physical properties to introduce

execution path randomness after every restart [29, 30]. Configuration files, memory loca-

tion, and hardware state are diversified to decrease the exposure of system vulnerabilities

after periodic reset operations, which prevents persistent attacks. However, the overhead

of such an approach can become infeasible for RTES. This dissertation uses deterministic

system execution paths to enable security without compromising the predictability of the

system through theoretical bounds on the security mechanisms.



CHAPTER III

NOVEL SIDE-CHANNEL ATTACK IN HIERARCHICAL

REAL-TIME SYSTEMS1

This chapter presents NOSYNEIGHBOR, a novel attack against hierarchical systems

that can find execution windows of a victim task in an isolated partition. In a real-time sys-

tem, tasks are schedulable entities with predictable execution times and guaranteed dead-

lines. NOSYNEIGHBOR exploits this timing constraint of real-time systems to infer the ex-

ecution of tasks across the boundaries of isolated partitions in hierarchical systems. An at-

tacker can use NOSYNEIGHBOR to effectively evade the state-of-the-art defense techniques

for hierarchical systems that depend on schedule randomization [3,16]. These defense tech-

niques assume tasks have static parameters (execution time and period), i.e., they presume

malicious tasks exhibit the same execution behavior over time. In practice, however, the

execution behavior of tasks in real systems can vary widely over time. NOSYNEIGHBOR

uses malicious adaptive tasks to draw timing inferences of the victims that improve itera-

tively throughout the attack execution. This adaptive inference fundamentally differs from

1THIS CHAPTER IS UNDER REVIEW AT ACM TRANSACTIONS ON CYBER-PHYSICAL SYS-

TEMS
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(a) Using adaptive parameters in Litmus-RT with P-RES scheduling. The attacker task adapts its

execution time in subsequent iterations to increase the explored region in the execution timeline.

NOSYNEIGHBOR orchestrates such adaptive tasks to draw precise timing inferences of the victim

tasks.

while (1) { while (1) {
x = 5; read(pipe_fd, (void*)x, 2);

for(i=0; i<x; i++); for(i=0; i<atoi(x); i++);

sleep(period); sleep(period);

} }
(i) A task loop (ii) A task loop with adaptation

(b) An example of on-the-fly parameter adaptation. The attacker uses tasks like (b) to adjust the

execution phases of malicious tasks.

Figure 3.1: A demonstration of adaptive task on Litmus-RT.

the state-of-the-art attack models that use a single-stage timing inference, which is the final

inference.

Hierarchical systems, including virtualization-based systems, use shared hardware

resources for multiple tasks. Hardware sharing makes them vulnerable to side-channel

information flow between the tasks. Embedded systems are especially prone to such vul-

nerabilities due to limited hardware resources. In these systems, obtaining precise timing

information of security-critical tasks can lead to more serious attacks such as cache side-

channel attacks [31]. By using the adaptive execution model, NOSYNEIGHBOR can draw

more precise timing information of a victim task than previously known, which increases

the effectiveness of existing time-sensitive attacks.

Schedule-based attacks have been extensively studied in real-time systems [6–8,32].

These attacks can be classified as anterior, posterior, concurrent, or pincer, depending on the

temporal proximity of the attacker’s execution in relation to the victim [15]. To determine
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Figure 3.2: The NOSYNEIGHBOR Attack: On each phase of the attack, the malicious tasks

adapt their parameters and improve attack precision. NOSYNEIGHBOR utilizes the precise

placement of malicious tasks to switch into an active attack. Section 3.2 discusses these

steps in detail.

the best timing to execute the attacker’s tasks, the attacker typically starts by observing

the system. During this observation, the attacker collects measurements about the system,

enabling them to infer the system’s parameters in general and the timing parameters of the

victim task in particular. However, the existing literature does not consider adaptive ex-

ecution of the attacker to improve the attack inference over time. NOSYNEIGHBOR uses

adaptive execution to evade state-of-the-art defense techniques based on schedule random-

ization.

Figure 3.1 illustrates the basic concepts and feasibility of adaptive attack execution.

The execution time of the attacker task in Figure 3.1a is different in two subsequent execu-

tions. In the second iteration of the task that starts at 130 ms, the execution time is increased

by 1 ms. This extended 1 ms execution time reflects that no higher-priority tasks were ex-
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ecuted during that time. Such extended execution is an example of adapted execution used

by NOSYNEIGHBOR to infer execution information of higher priority tasks through side-

channel. Section 3.2.4.1 describes the extended execution used in Figure 3.1a. Figure 3.1b

shows the code modification used by the attacker task of Figure 3.1a. Such modification can

be maliciously inserted into the program by an adversary to enable the adaptive execution

of a task based on external inputs. An adversary can insert such malicious programs into the

system by using existing code injection or supply chain attacks [33,34]. NOSYNEIGHBOR

uses adaptive tasks similar to Figure 3.1b, in which we show that these malicious tasks are

not required to be inside a trusted partition, and an adversary can use these tasks from an

untrusted and unauthorized partition to derive the precise execution times of the victim.

The attack precision depends on the relation between the actual execution window of a task

and the execution window inferred by NOSYNEIGHBOR.

To evaluate the success of the NOSYNEIGHBOR attack, I used the concept of at-

tack effective window (AEW), introduced by Chen et al., for side-channel attack evalua-

tion [35, 36]. An AEW refers to a time frame specific to each victim’s execution window.

For any given victim execution window, the relative AEW will encompass a superset that

includes the interval during which the victim’s execution occurs. In the literature, an attack

is considered effective only if executed within the victim’s AEW. Although the term AEW

implies that an attack will always be successful within this window, the resultant intervals

do not guarantee an impact on the system in the presence of an active attack. Hence, a

more precise term would be attack potential window. Nevertheless, I will continue to use

the term AEW throughout this dissertation for the sake of consistency with existing litera-

ture. Further description of the AEW and its use in the evaluation is provided in Section 3.3
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An overview of the NOSYNEIGHBOR attack is shown in Figure 3.2. First, the NOSY-

NEIGHBOR attacker constructs an initial timeline of the malicious tasks 1⃝ and builds a

baseline inference 2⃝ of the victim task. Next, it adapts the execution parameters of the

malicious tasks 3⃝ to increase its knowledge of the system’s schedule and improve the

inference of the victim’s execution. Over time, its inference tightens more precisely 4⃝

on the victim’s actual execution timing. Eventually, the NOSYNEIGHBOR terminates its

inference 5⃝ when it decides it has enough information about the victim task to conduct a

schedule-based attack.

3.1 Models and Assumptions

This section details the system and threat model assumed to demonstrate and evaluate

NOSYNEIGHBOR. I also present assumptions related to the attacker’s capabilities and the

vulnerabilities that an attacker can exploit.

3.1.1 System Model

I assume a uniprocessor real-time hierarchical system. The hierarchy is provided

by virtualization technology, such as a hypervisor that creates K partitions in the system.

Among these partitions, at least one is trusted, and at least two are assigned to untrusted

tasks. The attacker utilizes inter-partition collusion of tasks from distinct untrusted parti-

tions to generate precise timing inference of a targeted trusted task. I denote the targeted

task as the victim task. The system model assumption is aligned with the state-of-the-art

techniques addressing side-channels [3]. Although NOSYNEIGHBOR can be executed from
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a single untrusted partition if the system has only two partitions, the attack is most effective

when the malicious tasks are spread across multiple partitions. We also assume that the hy-

pervisor is trustworthy and secure from attacks, and thus, it correctly schedules partitions.

A global scheduler, a part of the hypervisor, is responsible for scheduling the partitions

based on their budget. Note that the global scheduler has no information about the individ-

ual tasks inside the partitions. Each partition has a local scheduler to handle the tasks inside

that partition. As demonstrated in Figure 3.1a, the P-RES scheduler in LITMUS-RT [37]

is an example of a hierarchical scheduler that matches the system model here.

Task Model. Each partition is denoted by Πk, and has a priority of k ∈ {0, . . . , K −

1}. Additionally, Πk is characterized by a period of T k and an execution capacity of Ck

within each execution period. We use the term major frame, denoted M , as commonly

defined in hierarchical systems as the least common multiple of all T k. A task of priority i

in partition Πk is denoted by τ ki . Each task τ ki has a minimum inter-arrival time of tki , after

which a new iteration or job of τ ki is released. A job τ ki,j is the j’th iteration of task τ ki .

Each task has a worst-case execution time (WCET) of cki and a relative deadline of dki .

3.1.2 Threat Model

The NOSYNEIGHBOR adversary aims to launch a schedule-based side-channel at-

tack on a victim task executing in a trusted partition. We assume that the trusted partition

is scheduled at a higher priority than the untrusted partitions, as is typical in hierarchi-

cal systems comprising software components from multiple vendors [38]. Although the

security-criticality and priority are not generally coupled in general-purpose systems, the

time-critical tasks such as navigation are generally placed at a higher priority partition
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in automotive-grade OS such as QNX [39]. Knowing the execution times of these time-

critical tasks can enable an adversary to execute time-sensitive attacks like denial of service.

We assume that the adversary can infiltrate and control some insecure application

tasks executing in untrusted partitions of the hierarchical system remotely. Specifically, we

assume that once the attacker has a foothold on a task, they are capable of controlling the

task’s execution parameters and configuring inter-partition communication for that task.

This system assumption is common in real-time systems, and one can leverage existing

attacks to achieve this capability [40]. We refer to the set of such tasks under the attacker’s

control as malicious tasks and denote them by TA. One of these tasks is designated as the

NOSYNEIGHBOR, and the remainder tasks are designated informants—they are formally

defined in Definitions III.1 and III.2 in Section 3.2.

We assume that the malicious tasks may have different requirements (in terms of

real-time performance, safety-criticality, certifications, security) and therefore could be al-

located to different partitions of the hierarchical system.

3.2 The NOSYNEIGHBOR Attack

This section details each step of the NOSYNEIGHBOR attack. The NOSYNEIGHBOR

attack strategy uses two categories of tasks, NOSYNEIGHBOR task and informant tasks,

which are defined below. These tasks are executed in the untrusted partition and have a

lower priority than the victim task.control these observer and informant tasks executing in

untrusted partitions and collect their execution intervals to infer the timing information of

the (higher priority)
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3.2.1 Definitions

Definition III.1 (The NOSYNEIGHBOR task). In the NOSYNEIGHBOR attack, a primary

malicious task is responsible for recording, analyzing, and adapting the execution parame-

ters of all the malicious tasks in the system. The NOSYNEIGHBOR task holds the following

properties to execute a successful attack:

• Is an untrusted task.

• Has control over malicious tasks in multiple partitions, and it can communicate with

the malicious tasks via inter-partition communication channels.

• Is responsible for computing the timing information of the victim.

Definition III.2 (The Informants). The informants are a set of malicious tasks that are

coordinated by the NOSYNEIGHBOR task. Each informant holds the following properties:

• Can access the (global) clock that synchronizes time in the system.

• Reports its own entry and exit times to the NOSYNEIGHBOR task.

• Keeps the processor busy for the execution time requested by the NOSYNEIGHBOR

task.

• Has a maximum budget, which is the WCET allowed for its execution.

I use the notation Iki,j,n to denote an informant task executed during the n’th major

frame in partition Πk, with task id i, and job id j.

Definition III.3 (Known and Unknown Regions). A known region is any time interval in

a major frame during which at least one informant has executed. In contrast, an unknown

region is an interval in the major frame during which no informant has executed since

the beginning of the attack (either because no informant has been scheduled during that
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interval or an execution by an informant was unsuccessful due to preemption). At the end

of the n’th major frame, we denote the total known region as ζn, and unknown regions are

denoted ζ ′n. ζ ′n is considered the attack inference after n major frames.

3.2.2 Overview

The NOSYNEIGHBOR task uses the informants to draw precise timing information

in a hierarchical system as follows:

1. The NOSYNEIGHBOR task generates an initial set of parameters for each informant

task.

2. The informants execute based on the initial parameters and report the execution in-

tervals of all their jobs throughout the major frame. The NOSYNEIGHBOR task con-

structs a baseline inference with these reports.

3. The NOSYNEIGHBOR task refines the precision of the inference by adapting the

execution parameters of some of the informants in the next major frame. The attack

stops when the inference timeline stays the same for two consecutive major frames.

The steps 1 and 2 form a baseline inference (Section 3.2.3). NOSYNEIGHBOR

uses this baseline inference to decide parameter adaptation for the informant tasks (Sec-

tion 3.2.4) in step 3. Upon completing the previous steps, NOSYNEIGHBOR can use the

timing inference to conduct schedule-based attacks (i.e., schedule exploitation). We illus-

trate these stages using the following example.

Example III.1. Consider a three-partition hierarchical system with a major frame of M =

24 units as depicted in Figure 3.3. Task τ 20 is the NOSYNEIGHBOR task and τ 00 is the
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NosyNeighbor Task             Informant Task

Known Region                     Victim Task  

1 1 1 1 1 1

2 2 2 2

1 1 1

4 8 12 16 206 180 2 10 14 22 24

(a) Baseline inference of the NOSYNEIGHBOR task τ20 with no collusion.

1 1 1 1 1 1

2 2 2 2

1 1 1

4 8 12 16 206 180 2 10 14 22 24

(b) Baseline inference with the addition of Informant Task τ10 .

1 1 1 1 1 1

3 2 3 2

1 1 1

1 1

4 8 12 16 206 180 2 10 14 22 24

(c) Updated inference with extended execution of Informant Task τ10

1 1 1 1 1 1

2 2 2 2

4 8 12 16 206 18

1 1 1

0 2 10 14 22 24

(d) After detecting preemption, NOSYNEIGHBOR uses shortened execution to adjust the

execution of τ10 . The current inference now precisely predicts the start time of τ00 .

Figure 3.3: The NOSYNEIGHBOR Adaptive Execution: the attacker adapts the known re-

gions by modifying the parameters of the informant task τ 10 , which improves the inference

of the execution pattern of the victim task τ 00 .



19

victim. The baseline inference stage begins in Figure 3.3a. Here, τ 20 ’s knowledge about

the schedule is limited to the duration of its own execution ([3, 4), [9, 10), and [17, 18)).

This leads to a poor inference of the execution pattern of victim τ 00 . When τ 10 is used as

an informant with an initial execution budget of 2 units (Figure 3.3b), the known regions

include additional intervals [1, 3), [6, 8), [13, 15), and [18, 20) due to the successful (non-

preempted) executions of τ 10 .

The parameter adaptation starts in the next major frame (Figure 3.3c). The

NOSYNEIGHBORtask extends the execution time of τ 10 to 3 units and subsequently reduces

it to 2 units (Figure 3.3d) because the extension resulted in preemption of τ 10,1 and τ 10,3 (in

Figure 3.3c). Altogether, this yields another expansion of the known regions by generat-

ing intervals [5, 6), [10, 11), [15, 16), and [21, 22) in Figure 3.3c. With this, the NOSY-

NEIGHBOR task can compute the total known regions of M and deduce the unknown re-

gions [0, 1), [4, 5), [6, 9), [11, 13), [16, 17), [20, 21), and [22, 24). Six out of those seven

inferred regions contain an execution of the victim task τ 00 .

3.2.3 Baseline Inference

The adversary’s goal in this attack stage is to establish an initial timeline. The NOSY-

NEIGHBOR task uses this timeline in the next attack stage for the parameter adaptation to

expand the known regions. However, establishing an accurate initial timeline poses a few

challenges. First, a task’s execution pattern may vary from one major frame to the next due

to system uncertainties, which are not considered in most state-of-the-art analyses. This

can impact the attack outcome in real systems. Second, we need an efficient data structure
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to manage the recorded timestamps of the informant tasks and calculate the parameter

adaptations for the next iterations of the attack.

3.2.3.1 Informant Data Representation

The NOSYNEIGHBOR attack requires storing and orchestrating the informant tasks’

individual jobs over multiple major frames and analyzing their timing logs. This poses

a challenge because of the number of jobs of each task that may participate in the attack.

NOSYNEIGHBOR uses an interval tree [41,42] to handle the large number of execution logs

collected by informant jobs. An interval tree is an ordered self-balancing tree where each

node represents an interval. It is also an efficient structure for finding overlapping intervals,

which is an important property for selecting the group of informants for adaptive execution.

For m informants, the tree can be constructed and searched with a time complexity of

O(m logm) and O(logm), respectively.

Definition III.4 (Informant Node and Informant Tree). An informant node represents a

time interval that denotes the start and end times corresponding to a job’s response time.

We denote the informant node of an informant’s job τ ki,j during nth major frame by Iki,j,n.

The informant tree I is the interval tree constructed from all informant nodes. The infor-

mant tree is updated at the end of the nth major frame with new values of Iki,j,n.

3.2.3.2 Handling Uncertainty and Schedule Randomization

Schedule-based randomization adds uncertainty to the inferred timeline from the at-

tack. Such schedule uncertainties can also result from system noises and release jitters.
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Depending on the randomization protocol used in the system, each job can have varying

magnitudes of uncertainties.

To account for these uncertainties, the known region reported by an informant during

its interval, which spans across multiple major frames, is collected to form a wider window

of the known region that accommodates the variances in the timing of the tasks. Thus,

the NOSYNEIGHBOR attack utilizes the sequences of major frames to discover new known

regions uncovered through such observations to establish the baseline inference.

In two subsequent major frames, the reported known regions overlap only if the shift

in the execution is less than the execution cost of the informant node. Hence, for major

frames n and n − 1, the reported known regions overlap if the difference between release

times of τ ki,j,n and τ ki,j,n−1 is less than cki . The newly reported region may yield a new known

region, which is wider than the previously recorded known region. To expand the known

regions from one major frame to the next, the union of the overlapping intervals is recorded

in an interval tree. Thus, the informant node of overlapping intervals at the end of the nth

major frame (n ≥ 1) is defined as:

Iki,j,n = [min{Iki,j,n.start, I
k
i,j,n−1.start}, (III.1)

max{Iki,j,n.end, I
k
i,j,n−1.end}]

where Iki,j,n denotes the interval recorded for job τ ki,j at the end of the nth major frame, with

Iki,j,1 being its first recorded interval node.

Similarly, the NOSYNEIGHBOR can evade randomization-based defense techniques

by relying on multiple major frames to collect a baseline value for each Iki,j,n. The ran-
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domness achieved by most randomization-based mitigation techniques is limited because

of the time-bounds constraints of the real-time tasks. As a result, it is possible to reveal the

predictable randomization patterns from the observation of multiple major frames.

The resulting known regions in the interval tree can potentially spread across different

major frames. Thus, to ensure that the initial timeline generated takes into consideration

the possibility of randomization in the hierarchical system, we proceed by generalizing

Equation (III.1) as follows. In the n’th iteration, the new interval collected for τ ki,j will fall

under one of these three cases:

1. Iki,j,n ≻ Iki,j,n−1

2. Iki,j,n ≺ Iki,j,n−1

3. {Iki,j,n} ∩ {I
k
i,j,n−1} ≠ ∅

The succeeds notation (“ ≻ ”) denotes that the entire range on the left side is greater

than the entire range on the right side of the symbol, e.g., [3, 5] ≻ [1, 2]. Hence, Case 1)

means that in the nth iteration, the informant job τ ki,j observed a later start and end time,

i.e., the interval shifted later in the cycle. Case 2) means the informant’s interval shifted

earlier in the cycle, and a shorter response time was observed, assuming the same release

time for the informant. In Case 3), the new interval overlaps with the previous interval. The

set notation in case 3) shows that the intersection of the two intervals is not null.

3.2.3.3 Constructing the Baseline Inference

We take a heuristic approach to update the known regions after each major frame

using Equation (III.1) by introducing additional informant nodes for cases 1) and 2) above

2Overlap(I, δ) returns the nodes in interval tree I that intersect with the interval δ.
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Algorithm 1 Forming the known and unknown set of regions

1: Input:Iki,j,n, ζn−1, ζ
′
n−1

2: Output:I, ζn, ζ
′
n

3: δ ← Iki,j,n
4: if δend − δstart > δetime then

5: δpreempted = True

6: O ← Overlap(ζ, δ)2

7: if O = ∅ then

8: if δpreempted then

9: ζ ′n ← ζ ′n−1 ∪ {δ}
10: else

11: ζn ← ζn−1 ∪ {δ}

12: else

13: for δ′ ∈ O do:

14: if δpreempted then

15: if |{δ′} ∩ {δ}| ≠ ∅ then

16: ζn ← ζn−1 ∪ {{δ
′} ∩ {δ}}

17: else if |{δ′} ∩ {δ}| ≠ ∅ then

18: δ′′ = [min{δstart, δ
′
start},max{δend, δ

′
end}]

19: ζn ← ζn−1 ∪ {δ
′′}

20: else if δ ≻ δ′ or δ ≺ δ′ then

21: ζn ← ζn−1 ∪ {δ}

for the same job. Since NOSYNEIGHBOR aims to segment the timeline into known and

unknown regions, adding more informant nodes will cover more regions of possible exe-

cutions of informants. Algorithm 1 shows the steps to construct and update the informant

tree over multiple major frames.

To construct the interval tree, Algorithm 1 compares the current interval (Iki,j,n) to the

total execution time of the informant task, which indicates preemption (Line 4). Subse-

quently, the algorithm checks whether the previously recorded interval in the set of known

regions ζ overlaps with the current interval (Iki,j,n) (Line 7). We check overlapping inter-

vals to handle the variances and randomizations by segmenting the informant intervals to

augment the known and unknown regions or expand the overlapping regions. On Line 9,
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ζ is updated as the union of both intervals and inserted in the tree. Otherwise, Iki,j,n is

recorded in ζ ′ tree. The attacker then investigates whether the overlapping preempted in-

tervals are due to the execution of a higher-priority secure task or due to the execution of a

higher-priority informant task.

The next step is to identify gaps in the informant tree I containing the baseline infer-

ence of the windows of the victim task. The informant nodes in I are the known regions.

Since the known and unknown regions segment the timeline, all the regions in the time-

line that are not covered by the informant nodes are the unknown regions. Hence, to form

a precise inference, NOSYNEIGHBOR needs to identify smaller intervals within unknown

regions in ζ ′ where the victim task might be executing.

Algorithm 2 Deriving Inference from Unknown Regions

1: Input: I , ζ , ζ ′

2: Output: V
3: V = ∅
4: for δ ∈ I do

5: executed← 0
6: O ← Overlap(I, δ)
7: δ′ ← NextNode(I, δ)3

8: V ← V ∪ {[δend, δ
′
start)}

9: if O ̸= ∅ & δend − δstart >
∑

o ∈ O + δetime then

10: budget← δetime

11: if |O| = 1 then

12: executed = δend − δ′end
13: remaining ← budget− executed
14: else

15: for i ∈ [1, Oend) do

16: executed← executed+ (Oi+1.start−Oi.end)

17: executed← executed+ δend −Olast.end
18: remaining ← budget− executed

19: if O1.start− δstart ̸= remaining then

20: V ← V ∪ {[δstart + remaining,O1.start}

21: return V

3NextNode(I, δ) returns the interval node after δ in the in-order traversal of interval tree I.
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Inference Tree Construction. The inference is also represented as an interval tree

(termed inference tree herein). To construct the inference tree, NOSYNEIGHBOR must

identify the different patterns of gaps in the execution intervals of the informant nodes.

Some of these execution gaps emerge from preemption by higher priority partitions, or

higher priority tasks in the same partition. Using the data fields from each informant node,

NOSYNEIGHBOR categorizes each job as preempted or non-preempted. An informant job

is considered preempted if the elapsed (wall) time is longer than its execution time.

Using Algorithm 2, NOSYNEIGHBOR identifies different patterns of victim nodes

based on the informants’ preemption categories. For non-preempted informants, no higher

priority task has executed within their execution interval. The corresponding victim nodes

are located in the gaps between such informant nodes. Formally, for an informant node

I(i) ∈ I , where i denotes an arbitrary informant node in the in-order traversal of the

informant tree I , the corresponding inference nodes δv and δ′v are:

δv = [I(i− 1)end, I(i)start]

δ′v = [I(i)end, I(i+ 1)start] (III.2)

Equation (III.2) can yield interval endpoint values that are 0 for scenarios when the next

executing task in the timeline is one of the informant tasks because the start and end times

are consecutive. In these scenarios, δv is not added to the inference tree V . Line 8 in

Algorithm 2 corresponds to Equation (III.2) above.

For preempted informants, there can be two cases that are handled in Line 10: (1)

multiple informant tasks overlap, and (2) no other informant task overlaps. In case (1), the
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Figure 3.4: Informant Task Execution Model.

preemption is caused by one of the other informants, a higher-priority task, or both. To

find the victim node inference in this case, we use the following equation for an arbitrary

informant node I(i) ∈ I:

∆ = I(i) \ {I(j) ∈ I | I(i) ∩ I(j) ̸= ∅} (III.3)

Equation (III.3) takes the interval of I(i) and excludes (via \) the intervals covered by

other informant nodes. Thus, ∆ is a set with intervals as elements. Each of these intervals

is added to V ′ as an inference node. Line 16 uses Equation (III.3) to select the time regions

where the informant task got preempted, leaving gaps in the execution phase that can be

potential execution times of the victim. These gaps are then added to the inference tree V .

3.2.4 Parameter Adaptation

After forming the baseline inference, NOSYNEIGHBOR uses multiple adaptive strate-

gies to adapt the execution parameters of informant tasks to improve the total timeline area
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covered by all the intervals in V . The goal of these strategies is to probe the victim nodes by

executing informant tasks during time intervals that should overlap with the victim nodes

by extending, deferring, or shortening the execution of an informant, as shown in Fig-

ure 3.4. To effectively probe the victim nodes, NOSYNEIGHBOR first selects a subset of

informant nodes and sends the modified task parameters to them for adaptive execution in

the next major frame.

Probes have two possible outcomes: the informants can either execute in overlap-

ping intervals with each other, or the informants get preempted. NOSYNEIGHBOR updates

the victim tree V using Equations (III.2) and (III.3) in these two scenarios. Algorithm 2

infers the time intervals where multiple informant nodes overlap. The victim tree derived

from Algorithm 2 is improved by shortening the time interval of each node in V during

subsequent major frames. After each major frame, the informant tree is updated using

Algorithm 1.

During the construction of the baseline inference, NOSYNEIGHBOR uses combina-

tions of informant nodes to find gaps in execution times. To overlap adaptive execution

with a victim node, δv ∈ V , NOSYNEIGHBOR selects the nodes from I that were used

for calculating the time window δv. NOSYNEIGHBOR uses these selected nodes to reduce

the unknown regions using different strategies based on whether non-preempted or pre-

empted informants generated the victim node. Each victim node is marked as visited when

the maximum possible informant tasks have been attempted to execute within that inter-

val. NOSYNEIGHBOR uses three strategies to visit the victim nodes: extended execution,

deferred execution, and shortened execution. Adaptive execution finishes after the victim

node intervals is not shortened by subsequent attack iterations, i.e., after one major frame
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Figure 3.5: Extended execution of informant τ 10,1.

with no change in the victim node. To keep track of the interval updates in each iteration

of the attack, the structure of δv contains the list of informant tasks, and indicate if this

node has been visited, and the victim interval (start to end time). The subsequent sections

describe the three types of adaptation that NOSYNEIGHBOR uses.

3.2.4.1 Extended Execution

Each task in the system has a maximum execution budget. In this strategy, the

informant does not initially consume its entire budget. Instead, it only uses a portion of

its budget for the baseline inference, which enables it to increase its execution time during

adaptive execution. Extended execution is used when the victim node resides between the

end time of a non-preempted informant and the start time of another informant.

Extended execution of a task from a higher priority partition will block the execution

of a task from a lower priority partition. Hence, if a victim node emerges due to a task from

a partition of lower priority, extended execution of a higher priority task will block it, and
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the victim node will be shortened or removed from the victim tree, improving precision.

Example III.2 illustrates the extended execution strategy.

Example III.2. Consider Figure 3.5 for this example. We denote the victim node as τ 00 .

Suppose τ 00 delayed the release of τ 10,1. After the baseline inference, NOSYNEIGHBOR

modifies the parameter of informant τ 10,1 to extend its execution time. Due to the higher

priority of Π2 over Π1, the informant node gets shifted due to the extended execution of

τ 10,1. Since the informant was able to execute for the entire window without preemption, we

remove its informant node from the victim tree V . The resulting inference is smaller (more

precise), and therefore, the likelihood of predicting the victim task’s execution is greater.

3.2.4.2 Deferred Execution

Each task in the system has a maximum execution budget that gets replenished at

regular intervals. The tasks can be executed anywhere in the timeline as long as it does not

exhaust the allocated budget. If the allocated budget is exhausted, the task has to wait for

the next replenishment period to start execution again. NOSYNEIGHBOR uses this property

of budgets to defer the execution of informants.

Deferred execution can be achieved by calling sleep() from the informant task to

allow the informant to probe a victim node interval. This is highly effective if the informant

has already exhausted its allocated budget. An example of deferred execution is shown in

Figure 3.6. Similar to Example III.2, the victim node will be removed from V after the

adapted execution of τ 10,1.
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Figure 3.6: Delayed Execution of informant τ 2(0,1).

3.2.4.3 Shortened Execution

Section 3.2.3.3 describes the two cases of preempted informant tasks. In both cases,

shortened execution enables NOSYNEIGHBOR to find a more precise starting point of the

respective victim node. From the constructed interval tree and interval data in Exam-

ple III.1, the interval [78, 90] has a length of 12. However, the task’s allowed execution

time is 6. Hence, the informant was preempted. According to the preliminary inference

strategy (Section 3.2.3.3), this interval will be treated as a victim node and will be added

to V . To find out the precise starting point of the preempting task, NOSYNEIGHBOR will

instruct the informant to reduce its execution time by 1 unit in subsequent iterations until

the requested execution time matches the actual execution time.

Figure 3.7 shows the schedule diagram of [78, 90]. In this example, τ 20,0 was pre-

empted by the victim task, and the shortened execution strategy placed the informant im-

mediately before the victim task’s execution. Such placement enables NOSYNEIGHBOR

to escalate the passive attack into an active anterior attack [15]. Interestingly, iteratively
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Figure 3.7: Shortened execution of informant τ 2(0,0).

shortening the execution time also reveals the entire interval of τv, which can be calculated

as τv = [I20,0,n.end, I
2
0,0,n−1.end− 1] , if the execution time is shortened by one unit in each

iteration.

Summary & Takeaway. Taken together, parameter adaptation strategies enable

NOSYNEIGHBOR to adapt the informants to grow, shift, or shrink their execution times

iteratively across major frames. This adaptive execution is a key differentiator that en-

ables the NOSYNEIGHBOR attack to succeed. Furthermore, the lack of consideration for

such adaptation in the existing countermeasures to prevent timing inference makes them

ineffective at preventing a NOSYNEIGHBOR attack.

3.3 Evaluation

I evaluated NOSYNEIGHBOR on synthetic task sets to validate our approach and

simulate the impact of NOSYNEIGHBOR on a range of realistic real-time systems. The

evaluation shows the effectiveness of NOSYNEIGHBOR in detecting the execution of a

victim task. Section 3.3.1 details the experimental setup used for the evaluation of NOSY-

NEIGHBOR based on the metrics discussed 3.3.2, and present our results in Section 3.3.3.

Note that the following evaluation assumes that the victim task has the highest task priority

in the system. The assessment results would vary based on the priority of the victim task
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relative to the priority of the other functions in the system, including that of the informants.

Since the main focus of this dissertation is to introduce the attack technique and the depen-

dency of the attack on the informant parameters, the evaluation of the attack impact based

on the victim’s priority and the scheduling algorithm used are out of scope for this paper

and would be an essential future work.

3.3.1 Experimental Setup

UUniFast [43] is a popular algorithm for generating synthetic tasksets for real-time

systems. However, UUniFast can only be used for non-hierarchical systems. So, I ex-

tended the UUniFast algorithm to accommodate hierarchical systems. I term the extended

algorithm as iterated UUniFast algorithm.

The iterated UUniFast algorithm first generates a synthetic set of partitions. Sub-

sequently, each partition generates a set of tasks with random parameters, ensuring that

all task sets are schedulable. This means that tasks can be successfully executed without

missing any deadlines.

In the following experiments, we set the value of the major frame M as 1000. The

period of each partition is randomly selected from the set of factors of M . Hence, M is

divisible by T k∀k. Each partition has a total utilization Uk = Ck

Tk , which is then chosen by

the UUniFast algorithm with a target utilization of 60% unless otherwise specified.

The budget of each partition is Uk × T k. Using the budget as the maximum possible

execution of all tasks combined, we used UUnifast to derive the utilization vector for the

partition’s tasks with periods randomly picked from the set of factors of T k. Similar to the
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partition, we used each task’s period and utilization to assign a budget. The priorities of all

the tasks within each partition are set using rate monotonic scheduling [44].

Among the set of all tasks, we randomly pick a (possibly empty) subset of tasks from

each partition, except the highest priority partition, as informant tasks. The total number of

informants picked from each partition is also randomly chosen for each partition.

Using these generated hierarchical tasks, we developed a discrete event simulator. In

each iteration, we use K event queues, one for each partition, to select the highest priority

task among all the partition queues and simulate execution. At each clock tick, all these

executions are recorded in a timeline.

3.3.2 Evaluation Metrics

I evaluate the efficacy of NOSYNEIGHBOR using precision and recall, which are

widely used metrics for classifier evaluations. I use the following definitions of precision

and recall for our experiments.

Precision: We define precision as a percentage of the correct guesses out of all the nodes

reported as potential victim windows. Formally,

Precision =
|True Positive|

|True Positive + False Positive|
. (III.4)

Note that a low precision indicates a high number of falsely identified victim execution

windows.

A detected window is considered a True Positive if the detected window is within

the attack effective window (AEW) of the secure task phase. We identify true positives by
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taking the intersection of NOSYNEIGHBOR’s generated inference tree and an interval tree

constructed from the actual execution intervals of the victim task. If a detected window is

not in the set of actual execution windows, it is considered a False Positive. Here, precision

is a proxy for the likelihood that an execution interval identified as being the victim’s is,

in fact, the victim’s. We first find the intersection of the inference tree and the original

execution times of the trusted task and divide it by the total number of reported victim

inferences in ζ ′.

Recall: Recall shows the percentage of the correctly identified victim inference windows

out of all the actual victim execution windows. This metric helps understand the quality of

the predicted inference tree. We measure the recall using the following definition:

Recall =
|True Positive|

|True Positive + False Negative|
(III.5)

In III.5, the False Negative denotes the execution windows not successfully detected by

NOSYNEIGHBOR. Note that a low recall indicates missed opportunities, while a high recall

indicates the attack finds most of the victim’s execution.

3.3.3 Experiments and Results

We have two categories of experiments. First, we perform a parameter space explo-

ration to understand the impact of different task parameters of the system on the quality of

NOSYNEIGHBOR’s prediction. Performance of NOSYNEIGHBOR at different task param-

eters shows the correctness of NOSYNEIGHBOR under normal system conditions.
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Figure 3.8: Impact of the number of informants on the precision(3.8a) and recall (3.8b).

Here, the system utilization is set to 60%, where 6 partitions have 4 tasks each, and only 3
partitions run malicious tasks randomly assigned to them.

We evaluate the performance based on attack parameters in the second set of experi-

ments. Note that the adversary does not decide NOSYNEIGHBOR’s attack parameters used

in the experiments; instead, these parameters are linked to an existing system’s vulnerabil-

ity that the attacker exploits.

Impact of Informant Count: We first evaluate the impact of the number of informants

on the inference quality. We run NOSYNEIGHBOR on 10, 000 random task sets generated

using the setup described in section 3.2. The system utilization is set to 60%, with 6 par-

titions, out of which 3 are impacted. Each partition has 4 tasks. The informant tasks are

randomly selected from the affected partitions. Figure 3.8a shows no substantial impact on

the number of informants on the inference precision with the given system parameters.

The recall also shows a similar trend in Figure 3.8b and shows minimal variation

with the increasing number of informants. This is due to the adaptive behavior of NOSY-

NEIGHBOR that enables it to gain a similar level of precision even with a small number of
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Figure 3.9: Impact of the total number of partitions in the system. Here, the system utiliza-

tion is set to 60%. Each partition has 4 tasks, and the number of partitions and informants

are varied.

tasks. This result shows that NOSYNEIGHBOR does not need control over many tasks to

determine an effective window for a successful attack.

Impact of Number of Partitions: We further extended this experiment in Figure 3.9a and

Figure 3.9b, which shows that increasing the total number of partitions in the system does

not significantly impact NOSYNEIGHBOR’s performance. A higher number of partitions

in the system adds more randomization when selecting affected partitions. Hence, the per-

formance analysis observed in Figures 3.9a and 3.9b show that the performance of NOSY-

NEIGHBOR does not depend on the combination of partitions where NOSYNEIGHBOR ex-

ecutes. An adversary can leak the victim execution intervals with a precision of over 60%

irrespective of the number and placement of affected partitions or informant tasks in the

system.
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Figure 3.10: Impact of utilization on precision and recall. The results are obtained with 4
informants, 6 partitions with 3 affected partitions, and the AEW is set to 500ms

Impact of Utilization: System utilization determines the noise that NOSYNEIGHBOR will

face during the execution. For higher utilization systems, NOSYNEIGHBOR will have

longer windows and higher interruption from tasks other than the victim tasks. The previ-

ous experiments showed that the precision value does not improve significantly beyond 4

informants. Following this result, we set the number of informants to 4 in this experiment.

We also set the number of affected partitions to 3 with a total of 6 partitions in the system.

The Precision also depends on the size of the AEW used for the victim task. To reduce the

impact of AEW in this experiment, we set the value of AEW to 500ms, which enables us

to see the impact of utilization without the AEW constraints.

Figure 3.10a and Figure 3.10b show the result of this experiment. Notice that the

precision and recall improve with increasing utilization. We observed that at lower utiliza-

tion, the informants exhaust their budgets or meet their deadlines during parameter adapta-

tion. However, they cannot find precise windows of the victim due to the lower utilization

of the system. The derived windows in lower utilization levels are wide and outside the
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AEW range. In the case of higher system utilization, where the schedule is denser, NOSY-

NEIGHBOR can narrow the inference window by adapting the execution parameters. With a

system utilization of 60%, the average precision is over 70%. 60% utilization is realistic for

many real-time systems, and this experiment shows that NOSYNEIGHBOR can effectively

infer victim execution under normal system loads.

Attack Effectiveness: We combine the results from all previous experiments to analyze

the effectiveness of NOSYNEIGHBOR inference. As delineated in Section 3.2, we employ

AEW to refine the range of intervals considered as True Positives. For example, if the

actual victim execution window is [10, 15) and the AEW is set at 10, a detection window

qualifies as a True Positive only if its range is a subset of [0, 25). The integration of AEW

enables the evaluation of inference performance through binary classification metrics; thus,

detection windows can be labeled with True/False Positives and True/False Negatives, akin

to traditional binary classifiers.

In Figure 3.11a, we observe that AEW can significantly impact the inference preci-

sion. This implies that for systems with very tight AEW, NOSYNEIGHBOR can have many

false positives, which lowers the precision score of NOSYNEIGHBOR. However, it can still

reach a precision of 30% at 60% utilization and AEW of 50 ms.

We observe in Figure 3.11b that the recall value is around 30% even for a wide

AEW. This implies that NOSYNEIGHBOR is unable to identify all the execution windows

of the victim task. This observation is the result of tasks with priority higher than NOSY-

NEIGHBOR and corresponding informants. However, even if a small subset of the attack is

successful, a safety-critical system can have a catastrophic impact.
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Figure 3.11: Higher AEW of the victim allows better precision and recall under constant

system utilization. Here, 3 out of 6 partitions are affected, with 4 informant tasks randomly

assigned to the affected partitions.
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3.3.3.1 Relationship of Precision and Recall in Attack Evaluation

In the above experiments, we used precision and recall to evaluate the effectiveness

of NOSYNEIGHBOR. These metrics are used mainly for the evaluation of binary classifiers.

However, in the context of detection windows, time intervals cannot be strictly classified as

binary True Positives or False Positives. For instance, if a detection window encompasses

the entire hyperperiod, one would attain 100% recall and precision, as all victim execution

windows would be contained within the detection windows. However, such an approach is

ineffective for targeted attacks and resembles a brute-force attack.

Typically, precision and recall exhibit an inverse relationship; that is, an increase in

precision generally corresponds to a decrease in recall, and vice versa. This relationship

is often referred to as the precision-recall tradeoff and has been extensively explored in

the literature to derive its characteristics [45]. Nevertheless, the plots presented in Sec-

tion 3.3.3 show a deviation from this conventional inverse relationship, indicating simul-

taneous growth in both recall and precision. This phenomenon can be attributed to the

multi-stage enhancement of inference. Since only the final results of the multi-stage infer-

ence are graphed rather than each individual stage, the outcome reflects a higher count of

true positives than observed in the baseline inference. This simultaneous growth of pre-

cision and recall aligns with prior studies indicating that a multi-stage detection system is

the only condition to allow simultaneous improvement of precision and recall [46]. Such

findings further substantiate the assertion that inference performance has been improved

through the multi-stage adaptive inference of NOSYNEIGHBOR.
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Despite the simultaneous growth of precision and recall, multiple system factors ul-

timately influence the final outcomes, and the underlying tradeoff persists; hence, an im-

provement in precision is likely to be accompanied by a reduction in recall. This phe-

nomenon is evident in Figure 3.8a, where precision is significantly higher than recall, and

any further adjustments to the algorithm or system parameters aimed at enhancing precision

would likely compromise recall. Notably, at the saturation point indicated in Figure 3.8a,

the values for precision and recall are complementary, with values approximately equal to

70% and 30%, respectively.

3.3.4 Case Study: NOSYNEIGHBOR Peeks Through the Blinds

We conducted a proof-of-concept NOSYNEIGHBOR attack on Litmus-RT. We used

the P-RES [37] scheduler, which is a partition-based scheduler widely used in the literature

for testing and validation of partition-based schedulers. In Blinder [3], the state-of-the-art

randomization-based defense in hierarchical systems, the P-RES scheduler is extended to

prevent timing side-channels by avoiding interference between tasks. The extended sched-

uler implementation is termed P-RES-NI. The P-RES-NI scheduler prevents task interfer-

ence using a calculated priority inversion of higher-priority tasks.

Figure 3.12 shows the execution trace of NOSYNEIGHBOR adaptive attack on a sam-

ple task set under the default P-RES scheduler. Tasks τ 10 , τ 11 , and τ 20 are the informant tasks

in the system, sending their execution timestamps to the NOSYNEIGHBOR task τ 21 . The

baseline inference derived by NOSYNEIGHBOR in the given execution trace shows that the

victim task executed during the time windows [81ms, 91ms] and [99ms, 105ms]. From the

task set, we observed that the derived baseline inference is correct. NOSYNEIGHBOR will
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Figure 3.12: Executing NOSYNEIGHBOR in Litmus-RT under P-RES scheduler. The ex-

ecution trace shows the inference drawn by NOSYNEIGHBOR using the execution times-

tamps of the informants τ 10 and τ 11 .
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Figure 3.13: Executing NOSYNEIGHBOR in the presence of randomization-based defense

with P-RES-NI scheduler

further improve the length of the inference window in the subsequent stages by adapting

the parameters of τ 10 and τ 11 using the flow chart shown in Figure 3.4.

To prevent this kind of coordination of malicious tasks, Blinder shifts executing a

higher priority task to prevent forming interference patterns on the lower priority tasks. In

Figure 3.13, we implemented the P-RES-NI scheduler from Blinder and executed NOSY-

NEIGHBOR on the same task set as in Figure 3.12.

We observed two limitations of Blinder in our task model that make Blinder vulnera-

ble to adaptive attacks. First, in Figure 3.14, we observed that Blinder is ineffective due to

the tight deadline. The tighter deadline of task τ 11 at 100ms does not allow enough window
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Figure 3.14: Zoomed-in view of Figure 3.13 from timestamp 80ms to 100ms. The non-

interference of Blinder is ineffective due to the constricted budget of τ 11
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Figure 3.15: Zoomed-in view of Figure 3.13 from timestamp 100ms to 120ms. Blinder is

effective in creating non-interference. However, due to the collusion of the informants τ 10
and τ 11 , NOSYNEIGHBOR could still make precise inferences about the victim.

for priority inversion without forcing the other tasks to miss the deadline. As a result, in

Figure 3.14, the informants could still create interference patterns. NOSYNEIGHBOR uses

Algorithm 2 to derive the inference window shown in Figure 3.14. Note that the end of the

inference window precisely coincided with the ending of the victim task τ 00 ’s. Hence, an ad-

versary can use the given inference window to successfully execute an anterior attack [15]

on the victim task even under the presence of randomization-based defense.
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The second limitation of Blinder is highlighted in Figure 3.15. We observed that the

P-RES-NI scheduler successfully prevented the formation of interference patterns through

calculated priority inversion. However, when NOSYNEIGHBOR receives the execution time

stamps of τ 10 and τ 11 at 115ms, NOSYNEIGHBOR uses Algorithm 1 to derive the baseline

inference by combining the timestamps of the informant tasks to generate the victim’s

timing inference without using the preemption patterns between tasks.

3.4 Summary

This chapter presents a novel side-channel attack, termed NOSYNEIGHBOR, tar-

geting hierarchical real-time systems. The effectiveness of this attack has been demon-

strated against state-of-the-art schedule randomization techniques. The attack model em-

ploys adaptive task execution and utilizes common inter-partition communication channels,

such as shared memory, to combine attack inferences derived from multiple malicious

tasks within the system. Simulated evaluations of NOSYNEIGHBOR reveal a precision

exceeding 70% under typical system loads. This attack underscores the shortcomings of

randomization-based defense used in the state-of-the-art. It motivates further research into

defense mechanisms against adaptive threats like NOSYNEIGHBOR that can circumvent

schedule randomization.



CHAPTER IV

IMPROVING SOFTWARE SECURITY THROUGH

MODULARIZATION OF LEGACY COMPONENTS1

Cyberattacks similar to NOSYNEIGHBOR (Chapter 3.2) can be propagated by ex-

ploiting vulnerabilities within source code. Such exploitation becomes increasingly feasi-

ble for attackers when the codebase has not been updated for an extended period and they

have had sufficient time to analyze the vulnerabilities and develop corresponding exploits.

For this discussion, I will refer to software components in the codebase that no longer

receive official support from their vendors as legacy components.

The critical infrastructure sector, including energy, transportation, and defense sys-

tems, uses a substantial amount of legacy software due to the challenges of updating these

components without disrupting their functioning. In this chapter, I present the use of mod-

ularization as a technique for facilitating software updates in critical infrastructure code-

bases.

1CHAPTER PUBLISHED IN [47]
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I looked into the energy sector and studied the Experimental Physics and Industrial

Control System (EPICS), which is an open source scientific cyberinfrastructure that is used

in particle physics research and development. Specifically, EPICS enables the creation of

distributed real-time control systems for scientific instruments such as particle accelerators,

telescopes, and other large experiments. As in other ICSs, secure communication between

nodes is essential to EPICS’s overall security posture. EPICS depends on the network-

ing implementations provided by the OS. One of the OSs EPICS uses is the Real-Time

Executive for Multiprocessor Systems (RTEMS) [48].

Traditionally, the network stack implementation is a part of an OS that handles the

networking tasks and the respective drivers for a network interface controller (NIC). The

TCP/IP stack implementation of RTEMS historically also resided in the kernel and the

user-level API declarations that RTEMS provides through the Newlib C library.

The legacy stack in RTEMS encounters several challenges. Firstly, this legacy stack

lacks many features now considered fundamental in modern networking. Specifically, it

is built on an older and less secure version of the IPv4, which is inadequate for many of

the systems supported by RTEMS. Updating the network stack is challenging since it is

tightly integrated with the RTEMS kernel. Consequently, any update to the network stack

necessitates updating the entire RTEMS kernel. Unlike general-purpose systems, where

updating software components can be straightforward, modifying any component within

an RTOS requires that the new or updated elements adhere to the same timing constraints

as the rest of the system.

To maintain its hard real-time nature, RTEMS does not have a separation between

userspace and kernel space. All application and kernel programs run on the same priv-
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ileged space to avoid the overhead of switching between them. This lack of separation

makes RTEMS more vulnerable to cyberattacks. Through the modularization approach,

the total codebase inside core RTEMS is reduced by over 270, 000 software lines of code

(SLOC), which significantly reduces the trusted computing base of RTEMS and improves

the security posture of RTEMS by allowing the core kernel components to be developed

and tested separately from the communication module like the networking stack.

In this work, I separate the legacy stack into its own module outside RTEMS to

facilitate switching the network stack without requiring heavy changes to user applica-

tions or the RTEMS kernel. This modularization uses extant Newlib header files to allow

RTEMS users to build and link their applications to their network stack of choice, much

like they can select among several different scheduling algorithms depending on the ap-

plication needs [49]. This modular Networking-as-a-Library framework also allows users

to build their own implementation of a network stack for RTEMS instead of depending on

the legacy implementation provided by the OS. This approach provides two major benefits

to EPICS. First, applications are not restricted in choosing networking features because

they can link to a different network library without changing much of the code. Second,

the network library provides an opportunity to upgrade to more secure, modern network

stacks.

The process of modularization itself does not enhance RTEMS’s security posture, but

it can expedite research and development efforts related to the security of network stacks.

By relocating the modularized codebase outside the real-time kernel, security researchers

can efficiently patch known vulnerabilities and report newly identified issues without the

constraints imposed by latency-sensitive kernel code. This strategy simplifies the skill set
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required for system engineers, enabling them to concentrate exclusively on networking

code and allowing for a more focused analysis of their modifications. Concurrently, kernel

developers can devote their attention to core kernel components, unburdened by security

concerns in communication channels, effectively treating the network stack as a black box

for impact assessment.

To the best of our knowledge, these contributions make RTEMS the first monolithic

RTOS that allows flexibility in choosing among multiple networking stacks. This flexibility

makes RTEMS is one of the most adaptable RTOS for real-time system developers by

providing them the option to select the network features that are specifically targeted toward

their needs, hence enabling tradeoffs in performance (memory consumption, bandwidth,

latency) and security.

4.1 Background

RTEMS is an open-source real-time OS. As such, systems built using RTEMS have

temporal and logical correctness requirements. In addition, because the RTOS supports

various size target platforms across different architectures (e.g., ARM, Motorola 6800, and

SPARC), developers have endeavored to use code that can suit embedded and resource-

constrained devices. In the early years of RTEMS, such code has been ported from the

lightweight C library Newlib [50], which is another open source project focused on pro-

viding POSIX-compliant cross-compiled software that is widely used in embedded system

projects. Specifically, RTEMS adopted several enhancements provided by Newlib (e.g.,

floating point support and math library [51]), including header files [52] for which RTEMS
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Figure 4.1: RTEMS High Level Architecture [1]

added its implementation. Some of these header files were used as a foundation for porting

RTEMS network stacks. I provide more explanation regarding this in Section 4.3.

The RTEMS kernel (depicted in Figure 4.1) is composed of four main blocks: the

Supercore, the board support package (BSP), the application programming interface (API),

and the Services. The Supercore is the heart of the kernel. It provides the OS with real-time

functionalities. As the name indicates, the BSP is responsible for providing all the neces-

sary support to integrate the different hardware targets RTEMS supports. The API block

allows RTEMS users to access the functionalities of the Supercore. RTEMS user-level

services range from enabling programming in multiple languages to accessing additional

libraries, including the newly added RTEMS network stack.

RTEMS provides a legacy implementation that is built into the RTEMS kernel. This

legacy stack was ported from earlier versions of FreeBSD and has been part of RTEMS

since the late 1990s. FreeBSD integrated DARPA’s TCP/IP stack [53] in its early network

stack implementation. The stack generically regroups the OSI communication model into
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four layers: the application layer (which combines the session presentation and application

layers of the OSI reference model) transmits user application data to the transport layer

using the sockets API. The transport layer uses TCP and UDP protocols over the IP (or

Internet) layer. The Network Access layer (which integrates the OSI model’s data link and

physical layers) is the network stack’s lowest layer. It handles the physical hardware and

protocols required to deliver the data across a physical network. This handling is done

through the device drivers in RTEMS, which are responsible for initializing and operating

the embedded hardware’s NIC.

A network application uses the networking APIs, like the socket API, to make system

calls with the appropriate protocol headers, which triggers the network drivers to send phys-

ical signals to the hardware to carry out the requested action. Traditionally, the networking

implementation is a part of an OS that handles the networking tasks and the respective

drivers for a NIC. The implementation also provides user-level header files that contain

the declarations for the user APIs. In RTEMS the POSIX networking API signatures are

provided to the applications through the Newlib C library, and the implementation of the

TCP/IP stack along with the NIC drivers, were a part of the RTEMS legacy stack.Although

multiple targets have used the RTEMS legacy stack for a long time, it did not evolve at par

with the developments in the FreeBSD stack due to the following reasons: first, making

changes inside the kernel requires significant time and expertise. Next, making any change

to the legacy network stack was essentially a change to the RTEMS kernel, which involves

a lot of regression testing.

In addition to Newlib, RTEMS uses FreeBSD’s code base, similar to several other

well-known OSs. FreeBSD [54] is also another open-source OS known for its high per-
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formance in modern systems. An RTEMS repository named rtems-libbsd, or the libBSD

module, was built by RTEMS developers to port the required codes from FreeBSD, which

also includes the API implementation for the Newlib header files. The libBSD module uses

a git submodule to track the upstream FreeBSD source code. LibBSD uses Python scripts

to port specific files from this FreeBSD submodule as follows: first, a block of FreeBSD

source code is imported from the submodule. Then, the necessary files are copied locally to

the RTEMS-libBSD repository and adapted to work with RTEMS through the scripts which

not only imports the code but also adds RTEMS-specific header files to them to properly

connect the FreeBSD drivers to the RTEMS kernel. (I refer to this approach as the libBSD

framework in the remainder of the paper.)

In recent years, the RTEMS developers have used the libBSD framework to im-

port FreeBSD’s TCP/IP stack, providing users with the option to use a modern and se-

cure FreeBSD network stack with their RTEMS applications. The LibBSD, which uses

the FreeBSD network stack, has a complete IPv6 support along with robust security fea-

tures [55]. The modern features present the libBSD stack as a great upgrade option to a

more modern stack. One caveat to having libBSD as the only alternative to the legacy stack

is that some targets have very limited available memory and are incapable of running the

libBSD stack. Thus, I prepared an adapter version of the lwIP [56] stack as an alternative to

the libBSD. lwIP is an independent project targeted towards embedded systems with strict

memory constraints. The features of the lwIP stack are comparable to that of libBSD, but

size and memory requirements are much smaller than that of an application linked with

libBSD. Some of the essential highlights of the lwIP stack are the much-required IPv6 sup-
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port and the support for IPSEC, which has been studied and added by other independent

projects [57].

In the following section, I present a modular network stack approach that decreases

the reliance on the legacy stack and provides additional network stack options. This ap-

proach also allows RTEMS users to develop more suitable network stacks without modify-

ing the entire RTEMS kernel.

4.2 Motivation

A modular network stack approach has been previously attempted on microkernel

OSs like HelenOS [58] where each part of the network stack works as a server module

for the microkernel proof-of-concept implementation. In contrast, our work is based on

a Monolithic Real-Time kernel, where I have implemented the whole network stack as a

separate library module that gets linked into one whole executable binary, which is run on

the target hardware.

NetBSD also uses a modular TCP/IP stack implementation through a rump Kernel

TCP/IP [59] that virtualizes kernel functional units into clients. The clients can be one of

three types: local, microkernel or remote. The local client-type approach uses rump kernel

as a library with rump API calls. Instead of adding a new API layer, our approach provides

support for the common API calls for multiple stacks and an application does not require

any change in terms of includes API calls for working with an RTEMS networking library.

I have extended our unique approach to add an independent networking stack lwIP,

which has been used in RTOSs before [60, 61], but our work differs in two ways. First,
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the Independent networking implementation has not been integrated into the kernel, in

contrast to the FreeRTOS TCP/IP implementation, which is part of the kernel. Second,

the networking module provides a framework for adding and modifying any layer of the

network stack without affecting the main kernel, which will pave the way for support on a

wider range of architectures and NICs.

4.3 Modular Network Stacks

RTEMS users currently face the following challenges related to the implementation

of the network stacks: (1) difficulty upgrading the legacy stack, (2) inability to fully utilize

each of the existing network stacks (legacy and libBSD) because of a lack of appropriate

drivers, (3) lack of security support in the legacy stack. To address the first challenge, I

separated the components of the legacy stack from the current RTEMS kernel into its own

standalone repository (see Section 4.3.1).

To resolve (2), I have separated the drivers from the RTEMS kernel and integrated

them into the networking module. Additionally, I created a standalone submodule called

rtems-net-services, which can be incorporated into any RTEMS network stack to provide

networking services such as the File Transfer Protocol (FTP) and Trivial FTP (TFTP).

These services are accessible by any network stack module (see Section 4.3.4). Further-

more, as part of our ongoing efforts, I have streamlined the workflow for adding support for

specific hardware platforms to enhance compatibility across all network stacks. I demon-

strated this new workflow and conducted experiments on an uCdimm ColdFire 5282 Mi-

crocontroller Unit (uC5282), a low-resource board with memory as low as 512kB. uC5282
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is used in EPICS for RTEMS-based projects, and the modularization of the legacy network

stack allows continued use of the device in production while appropriate alternatives are

being explored.

To address the third challenge, I use a network stack implementation that provides

modern security features such as IPv6. The lwIP network stack implementation [56]

matches such a requirement. In addition to IPv6, lwIP can also be combined with other

independent protocol implementations like embedded IPSec [62]. lwIP in combination

with embedded IPSec has been evaluated with microkernel OS [57], showing that lwIP can

be robust and versatile when adding security updates. Moreover, the lwIP network stack

is targeted towards embedded systems with strict memory constraints. As such, I broad-

ened the existing network stack options by fully integrating a third network stack module

based on lwIP. The lwIP-based networking stack, called rtems-lwip, will enable the users to

choose the network stack that provides the necessary security required for the application

(see Section 4.3.3).

As a result, a new architecture is obtained for the network stack library, as shown

in Figure 4.2. In the following subsections, I describe how the stacks and the net-services

module were built to form the network stack library in further detail. Table 4.1 shows a

comparison of the features of the network stacks.

Table 4.1: Comparing network stack features

Feature LibBSD lwIP legacy

TCP ✓ ✓ ✓

UDP ✓ ✓ ✓

IPv4 ✓ ✓ ✓

IPv6 ✓ ✓ ×
IPSec ✓ ✓ ×
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Figure 4.2: RTEMS with Modular Network Architecture [1]

4.3.1 Legacy Networking Module

Any significant modification to the legacy stack requires extensive changes to the

kernel. Thus, to ensure that any update still satisfies and preserves the current networking

functionalities of RTEMS and to make the legacy stack available to the projects that are

actively using it (without any change in their project), I opted to separate the legacy stack

from the core of the OS in the form of a static library (libnetworking.a). A static library

allows us to treat the existing network stack as a separate unit in the OS without requiring

the code to be built along with the OS kernel. Building the static library requires that we

slightly modify the current flow of the RTEMS Networking, and link the libnetworking.a

library to the user application directly. In the new separate legacy stack, I followed the same
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directory structure that was maintained in RTEMS, to make it easier for interested devel-

opers to maintain this stack separately without having to adapt to a different organization

of the same codebase.

The implementation of the legacy stack was located within the RTEMS cpukit/ di-

rectory. In contrast, the BSP-specific drivers for legacy networking resided in the bsps/

directory for each hardware target supported by RTEMS. To facilitate the integration pro-

cess, I established the rtems-net-legacy repository [4], which contains the TCP/IP imple-

mentation files and BSP drivers. During compilation, user applications statically link to

the libnetworking.a library, which encompasses the legacy TCP/IP implementation along-

side the BSP networking drivers utilized by the legacy stack. To create a straightforward

and easy-to-integrate system for developers, I chose the Waf build system [63] primarily

because it is written in Python, a general-purpose scripting language. This decision allows

developers to concentrate on writing functional code, thereby saving time on adjustments

to the build system.

The new build process comprises three stages (Configuration, Build, Link) as shown

in Figure 4.3. During the Configuration stage, Newlib provides the networking API header

files the user application uses. Then a Waf script (wscript) collects the build context ,

which consists of the target name, toolchain executable locations, build flags, and other

environment variables. In the Build phase, a script (netlegacy.py), which I added to the

repository, uses this build context and collects the required files to build. The selection of

files is important to ensure that the correct driver gets linked according to the build context.

The linked driver connects to the RTEMS kernel through the bsp.h header file, which is a

BSP-specific header file present in all the RTEMS BSPs. This header contains the macro
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Figure 4.3: Modular Network Stacks Build Process [1]

defined for RTEMS BSP NETWORK DRIVER ATTACH, which declares the name of the

driver attach function that the BSP will call to initialize the network interface. The driver

attach function is defined in the libnetworking.a library generated from the waf build. This

library is then linked to the user application in the Link phase. Since the end product from

the Build phase is a separate C library, the user can use their build system to link to the

library.

4.3.2 LibBSD Module

RTEMS uses this LibBSD framework to port the current TCP/IP network stack from

the FreeBSD sources, which provides a full featured IPv6 [64] supported network stack.
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To accommodate this BSD stack addition to RTEMS without changing the RTEMS source

code significantly, the TCP/IP API header files required for the current BSD stack are

pushed into upstream Newlib repository under the directory libc/sys/rtems/include/. Like

the legacy networking process, the LibBSD builds a static library libbsd.a from the Free-

BSD ported codes. This separate library is especially interesting for the network stack,

as the networking API declarations are provided by Newlib while the implementation is

obtained from libBSD. Using this approach, any application that makes use of the latest

BSD networking can link to libbsd.a.

4.3.3 LiblwIP Module

The lwIP stack has been used in multiple embedded OS projects, such as FreeRTOS

and HelenOS. In the RTEMS community, some users have also individually developed

RTEMS drivers in order to support the lwIP TCP/IP stack for their projects. For example,

the “uLan protocol for RS-485 9-bit network” project [65] has adapted the lwIP stack for

RTEMS along with a driver for their target board ARM based TMS570. There are multiple

such independent projects that are using the lwIP TCP/IP stack, but developments made on

these projects are unavailable for an RTEMS user out of the box. To address the issue of

scattered lwIP drivers, and to provide an alternative to the libbsd and legacy network stacks,

I built a standalone networking module for RTEMS that can act as a centralized location

for drivers, hardware abstraction layers (HAL), and adaptations developed by independent

projects to use the lwIP stack with RTEMS.

The newly created rtems-lwip repository [5] also uses the Waf build system and has

the same modular structure as the previous two stacks. I have also added the upstream lwIP
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repository as a submodule to rtems-lwip. This submodule tracks the upstream changes,

making it easier to update to the latest ones without starting a whole new self-hosted in-

dependent project. Along with our adaptation of the lwIP stack, I added network drivers

developed by Texas Instruments for the ARM-based BeagleBone Black board to test the

build process.

4.3.4 Net-Services Submodule

To further push for modular options, I moved some of the common net services

(for example, tftpfs and telnetd) from the RTEMS kernel into a separate repository desig-

nated rtems-net-services that acts as a submodule to rtems-net-legacy. This new submodule

builds static libraries (such as libtftpfs.a and libtelnetd.a for ftpfs and telnetd respectively)

for the networking services.

The creation of the rtems-net-services submodule demonstrates that placing the

RTEMS networking services in a module is both effective and maintains usability and

function as it does not add any extra layer of build process for the user. Users who rely on

the RTEMS networking services can build only the services they need, reducing executable

size since these services are no longer in the kernel.

4.4 Evaluation

In this section, I present three evaluations of the RTEMS modular network stack

framework presented in Section 4.3. In the first experiment (in Section 4.4.1), I show that
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the modular networking framework does not require substantial effort from the user. To do

so, I demonstrated the building of the rtems-net-legacy module using the waf system.

In the second experiment (Section 4.4.2), I analyzed the memory requirements to im-

plement each of the three network stacks (legacy, libBSD, lwIP). Specifically, I computed

and compared the size of the binaries of the same application over the legacy and libBSD

network stacks. This experiment highlights the memory requirements between the stacks

and shows the potential implications of switching from the legacy stack to the rtems-libbsd

stack.

In the final experiment (Section 4.4.3), I evaluated the round trip times (RTT) of

the rtems-libbsd and rtems-net-legacy stacks Although the lwIP network stack is fully inte-

grated and adapted to RTEMS, the driver support is limited for an RTT analysis. Therefore,

the lwIP stack was not used in this experiment.

For all three experiments, I have selected the uCdimm Coldfire 5282 (uC5282) as our

hardware target due to its wide use in projects that deploy EPICS and RTEMS for safety-

critical applications. The uC5282 microcontroller module uses the Motorola MCF5282

microcontroller that has an integrated 10/100 Fast Ethernet Card. The uCdimm platform

has an onboard Synchronous Dynamic Random Access Memory of 16MB.

4.4.1 Building a Classic Application Using Net-Services

In this section, I illustrate the process of building a simple Round-Trip Time appli-

cation using the legacy network stack. The application building follows a two-step process

as described in section 4.3.1. The network stack is configured for the target hardware with

the command shown in Figure 4.4, then built using the ‘./waf‘ command.
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Figure 4.4: Command to configure and build rtems-net-legacy stack for uC5282

For rapid functionality testing of the network stacks on uC5282, I have also provided

QEMU emulator [66] support for the uC5282 target. The current main branch of QEMU

does not have support for the target board so I refactored an old patch [67] to make the

board compatible with the current QEMU. I will contribute this added support to QEMU

upstream.

4.4.2 Size Comparison of Binary Images

To compare the sizes of the binary images of the three network stacks, I used the

same RTT application that I built in the experiment in 4.4.1. I used the GNU objcpy and

size tools from the GNU toolchain for the m68k target, to get the binary images of the

executable linked to different stacks, along with the size of text, data, and bss segments to

understand the memory usage of the apps in each network stack.

Table 4.2 shows the results from comparing the size of the generated binary images.

The size difference between the libbsd stack and the other two stacks is significant. How-

ever, the size difference between the lwIP stack and legacy stack is much lower. The sizes of

the .text segment (which in all three cases represents the largest portion of the executable)

show that the libBSD brings in a much larger code, making the executable much larger

compared to the other two. The .data segment shows a similar pattern where, interestingly,

the lwIP stack has the lowest value. This low value is due to the optimized memory design
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of the lwIP stack, which enables it to run on targets as low as 512kB of memory. The .bss

segment in the lwIP stack can be reduced by allocating even lower memory to the lwIP con-

figuration, which can be done in the rtems-lwIP repository through the lwipopts.h header.

This similarity in the lwIP and legacy stack size shows that rtems-lwip can be a suitable

alternative to the legacy stack for memory-constrained targets.

Table 4.2: Size comparison of binary images (all values in kB)

Network stack .text .data .bss Total Size

rtems-libbsd 1273 58.4 24 1,332

rtems-net-legacy 244.4 6 44 250.5

rtems-lwip 293 1.7 59 294

4.4.3 Round Trip Time Analysis

The RTT analysis shows the latency of the network, which gives an idea of how much

time it takes for a packet to be transferred. A comparison of the RTT over the loopback

device shows the latency from the network stacks only without other factors can affect the

latency, like the wiring and routing overhead due to the connection between devices.

To compare the RTT, I created a lightweight application that sends a constant-size

packet over the Internet Control Message Protocol (ICMP) using raw sockets. The ICMP

header size is 28B and I added a padding buffer of 56B to send a total of 84B. From the

recorded data over 10 runs (see Figure 4.5), I noted that the LibBSD stack has a latency

overhead of approximately double the average latency from the legacy stack. This obser-

vation shows that switching an application to the FreeBSD-based libbsd stack will have a

performance overhead that can accumulate every time a packet is sent or received. This

overhead might become critical in high-precision industrial controllers where the latency



63

Figure 4.5: Round trip time comparison of the RTEMS network stacks [1]

of the network can impact the validity of observed values. The latency analysis reinforces

the need for a lightweight network stack alternative, which will be available to the user

through the rtems-lwip module.

4.5 Summary

This chapter explores the challenges of upgrading software components in real-time

embedded systems, primarily due to the complexity of the codebase and the stringent tim-

ing constraints that each line of code must meet. It introduces the concept of codebase

modularization within RTEMS, a monolithic RTOS, focusing on migrating the networking

stack implementation outside the kernel and into a standalone repository. This approach,

termed Networking-as-a-Library, is novel in a monolithic RTOS, as it effectively main-

tains the interaction between the kernel and the communication modules without forcing

any specific implementation on RTEMS and allowing the user to choose from the network-
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ing implementation based on their requirements. The findings from this research have been

adopted by several national laboratories, enabling them to use legacy system components

alongside the exploration of newer networking stacks without experiencing system down-

time. The codebase and the developed networking modules as a part of this chapter have

been open-sourced and freely available for use [4, 5].



CHAPTER V

REAL-TIME RECOVERY OF SYSTEMS UNDER ATTACK1

Increasing attacks on CPS have motivated research in CPS security. One such secu-

rity approach is the Simplex architecture. Figure 5.1 depicts the architecture comprising

three primary components: safety unit, complex unit, and decision module. The safety unit

contains a fully verified controller that is outside the reach of an attacker. On the other

hand, the complex controller makes significant use of commercial off-the-shelf (COTS)

components that are not verified and can be vulnerable to attacks. The decision module

is responsible for switching the operation mode between safety and complex controller to

ensure the CPS plant is functional throughout the timeline. The use of the COTS compo-

nent exposes the complex controller to known vulnerabilities. A restart-based approach has

been previously used to strengthen the security of the complex controller [25, 68, 69].

This work presents a secure boot integrated restart-based approach that periodically

restores the real-time complex controller into a secure computing environment. The secure

boot mechanism prevents the installation of persistent rootkits or compromised OS images

1CHAPTER PUBLISHED IN [1]
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from taking over a system. Though the secure boot sequence ensures a trusted computing

environment after every restart, its use in safety-critical systems is limited due to the lack

of thorough timing analysis for real-time systems.

Complex Unit

ActuatorsSensors

Peripherals, 
I/O, 

User Inputs

CPS PLANT

Safety Unit

Decision Module

Simplex-Based RTES

Figure 5.1: Architecture of CPS plant with Simplex-based RTES Controller [1]

5.1 Adversary Model

As shown in Figure 5.1, the RTES’s complex controller unit can be accessed from

the CPS network through the system’s input interfaces and peripherals. The threat model

described in Section 3.1.2 acts on this complex controller. I assume that the safety con-

troller is located on a separate and isolated partition of the RTES and, therefore, cannot be

accessed by the remote attacker. I also assume that all software components of the complex

unit in the RTES are trustworthy initially, i.e., trusted system developers cryptographically

sign their static images.

Consistent with previous studies [23], the goal of the attacker in this work is to control

or tamper with the plant’s operation. To achieve this goal, the attacker manipulates the real-

time operating system (RTOS) image or real-time and control applications in the complex
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controller. This manipulation impacts the integrity of the actuator commands computed by

the complex controller.

5.1.1 Secure Boot-Enabled Simplex System

Our goal in this work is to integrate security functionalities to prevent the adversarial

actions presented in Section 5.1 while attempting to minimize the impact on the system’s

performance. In this section, we present the design of the secure boot-enabled RTES and

analyze its schedulability performance.

5.2 System Design

An RTES compromised by an adversary at runtime can be recovered by resetting

the complex partition to its initial trusted state using an external timer input and a secure

boot-enabled restart operation. The safety unit provides a mechanism to initiate the secure

restart operation on the complex unit, and regardless of the partition’s current state (secure

or under attack), the safety unit sends a hardware pulse to the complex controller reboot

pin. Hence, an adversary is unable to block the restart operation. The secure-boot-enabled

restart ensures that (1) compromised software components are disabled and (2) only au-

thenticated software components are activated in the complex unit once the partition is

restored.

Both the deactivation (of possibly corrupted software) and authentication (of trust-

worthy software) are achieved through a signature verification mechanism started from the

root of trust, a system component trusted for measurement and verification at all times.
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The root of trust comes in the form of software and hardware components. A software

root of trust can be stored in a secure read-only memory (ROM) location and is responsible

for checking the signatures of subsequent components locally or with the help of trusted

hardware. This work uses a bootloader as a software root of trust, a trusted component in

traditional computing systems that initializes a system’s software stack. A bootloader is

also usually lightweight and suitable for resource-constrained platforms such as an RTES.

This signature verification approach guarantees a secure computing environment only

at restart. That is, once the RTES has been securely rebooted, the adversary can once again

attempt to modify the RTOS and other applications to regain control of the complex con-

troller. Thus, to limit the potential impact of an attack, we routinely verify the authenticity

of the software on the platform by performing a periodic secure reboot.

5.3 Schedulability Analysis

We now analyze the operation of the complex unit with periodic secure reboots en-

abled and derive the schedulability conditions for a secure-reboot system. First, we for-

mally define the RTES tasks necessary for the analysis as follows: we consider that the

complex controller is a uniprocessor system that executes a set T of periodic tasks using

a fixed priority preemptive scheduling algorithm prior to integrating the periodic secure

reboot functionality. Each periodic task τi ∈ T is characterized by a tuple {ci, Ti, i}, where

ci is the WCET of the task. Ti is the period, i.e., an instance of the task is periodically

released at a regular interval of Ti units of time (we denote by τi,m the instance released

at time mTi). i is the task’s priority. Priorities are assigned such that for two tasks τi and
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τj , if i < j then τi has higher priority than τj . In addition, we assume the tasks to have

relative deadlines, that is, a task released at mTi, for an arbitrary integer m, must complete

its execution by (m + 1)Ti (we refer to the implicit deadline simply as deadline herein).

We denote the total utilization of T by U =
∑

ui where ui = ci/Ti.

The WCRT of τi on a unicore processor, with fixed priority preemptive scheduling

[70, 71], can be calculated using the recurrence relation by Audsley et al. [72]:

Ri(n+ 1) = ci +
∑

ij<i

⌈

Ri(n)

Tj

⌉

cj (V.1)

where Ri(n) is the value of the WCRT calculated at the nth step of the iteration. The

equation terminates when Ri(n + 1) = Ri(n) or Ri(n) > Ti. The base condition for the

recurrence relation can be taken as R(0) = ci.

To integrate the periodic secure reboot, we model the reboot procedure as a periodic

task τr with a WCET of cr, a period of Tr, and a priority r. Since the reboot process is

capable of preempting all ongoing processes in the complex controller, we consider that

τr has the maximal priority r in the system, i.e., r < i, ∀τi ∈ T . Also, for the restart

task, the WCET cr can be viewed as the duration between triggering the reset pin of the

controller to the instant the first task of T starts execution. This duration depends on the

controller’s mode of operation. For our analysis, we distinguish three modes: For a system

with no restart task, we let cr = 0. When a periodic non-secure restart is added, we can

assign cr = ϵ, where ϵ represents the duration of the system restart. Finally, for a mode

of operation that integrates the periodic secure reboot functionality, cr = ϵ + ϵ′, where ϵ′
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represents the overhead due to secure boot verifications. Since the restart procedure is the

same for every restart, cr is considered constant.

Besides cr, another timing parameter we must study to perform an accurate schedu-

lability analysis is the maximum number of restarts a task τi can be subject to before com-

pleting a single execution. The worst-case number of restarts can be characterized by first

understanding the secure reboot mechanism: If a task is already executed when the reboot

is triggered, it will be terminated and flushed along with the rest of the system memory.

However, if the task has not been released yet, that task will be scheduled even if the task

and restart are released simultaneously. Using this distinction, we formulate the following

Lemma derived from Eq. V.1:

Lemma V.1. WCRT for an arbitrary task in a secure-restart-based RTES is found when

the following recurrence relation is satisfied:

Ri(n+ 1) = ci + cr +
∑

ij<i

⌈

Ri(n)

Tj

⌉

cj (V.2)

converges, i.e., Ri = Ri(n+ 1) = Ri(n).

Proof. Let us draw a relation between an arbitrary task τi ∈ T and the reboot task, τr for

an arbitrary instance τi,m. We know that the release time of τi,m is mTi and the relative

deadline is (m + 1)Ti. Similarly, we can assume a reboot task with period Tr. The least

common multiple of the periods of all tasks except the reboot task is a hyperperiod, denoted

by h. The total number of possible restarts in h can be calculated as ⌊ h
Tr
⌋. Out of all

the possible reboot instances, let us assume that τr,k is closest to τi,m. Between τi,m and
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τr,k, there can be three possible relations: kTr ≤ mTi, mTi < kTr ≤ (m + 1)Ti, and

kTr > (m+ 1)Ti.

Case 1: The worst-case overhead will occur at kTr = mTi, where the overhead will

be cr = ϵ+ ϵ′.

Case 2: In this case, either kTr−mTi is large enough for τi,m to complete the execu-

tion, or the reboot will terminate the task, and it will be deemed non-schedulable. Hence,

the worst-case overhead will be 0 in this case.

Case 3: This case won’t affect the execution of τi,m. Hence, this case won’t add an

overhead to the WCRT.

Hence, the highest interference due to reboot will be observed in case 1. Therefore,

taking cr = ϵ+ ϵ′ in Eq. V.2 captures the WCRT out of all possible cases.

The key here is that a task instance can face a maximum of one reboot during its

execution. If the reboot preempts the task, the decision unit will switch the control to the

safety unit to prevent the system from crashing and switch back to the complex controller

when it is active after the reboot.

A task is deemed non-schedulable if any instance of the task fails to complete execu-

tion within the deadline. Lemma V.1 states the WCRT equation for a periodic reboot. The

WCRT for a task can be used to formally state the conditions for schedulability.

Lemma V.2. For a task τi to be schedulable in a secure reboot-enabled RTES, it is neces-

sary to satisfy the following conditions:

1. Ri ≤ Ti,
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2. U + ur ≤ 1, where ur is the utilization of τr,

3. Ri ≤ Tr,

If condition 1 is not satisfied, a task released at time mTi will not be able to complete

execution before the release of the next instance of the task at time (m+1)Ti. The following

reasoning can explain condition 2: Let U = c
T

, and ur =
cr
Tr

. If c
T
+ cr

Tr
> 1, it implies that

cTr+crT
TTr

> 1. We know that the hyperperiod of a task set is equal to the LCM of the period

of all the tasks. Let us denote a hyperperiod by h. Hence, we can also write cTr+crT
h

> 1,

or cTr + crT > h, which implies that all the tasks (including the restart task) cannot be

accommodated within the given hyperperiod if condition 2 is not satisfied.

Condition 3 of Lemma V.2 extends condition 1 and only applies to systems with

periodic reboots. The conditions state that the reboot period has to be at least the length of

the WCRT of the task, else the task will be terminated by the periodic reboot, and it will

never be able to complete execution.

For a periodic task set, we can treat the necessary schedulability conditions stated

in Lemma V.2 as the base condition for schedulability. However, these conditions are

insufficient to prove a task’s schedulability because they do not account for all the possible

instances of a task. As stated in the proof of Lemma V.1, there can be cases where kTr −

mTi ≤ Ri and the task will fail to complete before being terminated by the system reboot.

We can generalize the cases from the proof of Lemma V.1 to define the execution window

of the task.

Definition V.1 (Execution Window). For an arbitrary instance m of a task, τi,m, the execu-

tion window is the maximum available execution time before the task gets terminated. The
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execution window of any arbitrary instance τi,m can be formally defined as:

Xi,m =



















kTr −mTi mTi < kTr ≤ (m+ 1)Tr

Ti, kTr ≤ mTi or kTr > (m+ 1)Ti

(V.3)

For all possible pairwise values of (m, k), where m and k are instances of a system

task and reboot task respectively.

In Fig. 5.2, we see three different cases of execution window. For Xi,1, the task

executes after the system has rebooted into a fresh state, in this case, the execution window

is Ti. In the case of Xi,2, we see no interference due to reboot and this case also has the

same execution window size. However, in the case of Xi,3 we note that the execution time

has been shortened due to the periodic reboot. Using the three cases, Eq. V.3 can be further

tightened to only use instances of Tr to calculate the execution windows that are shortened

due to the periodic reboot. We can define the minimum available execution window for an

arbitrary task based on the reboot period.

Cr Ci Ci

Cr Secure Restart Task                  Arbitrary Task of TCi

Execution of Tasks of higher priority than τi 

CrCi

Xi,1
0 τi,1

Xi,2
τi,2

Xi,3
τi,3

τi,3 suspended
due to reboot  

Figure 5.2: Example of three execution windows (Xi,1, Xi,2, and Xi,3) for task τi. The

minimum execution window is Xi,3 because it is shorter than Xi,1 and Xi,2 due to the

upcoming second instance of τr. [1]
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Definition V.2 (Minimum Execution Window). The shortened execution window can be

defined as:

Xi,m =



















kTr −
⌊

kTr

Ti

⌋

Ti, kTr mod Ti ̸= 0

Ti, kTr mod Ti = 0

(V.4)

In the piecewise equation Eq. V.4, the conditions are based on the divisibility of kTr

by Ti. If the reboot instance is a multiple of Ti, i.e., kTr = nTi for n ∈ Z, the execution

window of the immediately preceding task will be kTr −
kTr

Ti
Ti = nTi − nTi = 0, since

kTr = nTi. Hence, the execution window available to the nth instance of the task is Ti as

the reboot trigger coincides with the task deadline, and the reboot does not shorten the task

window. Using Eq. V.4, the Minimum Execution Window can be defined as min{Xi,m}
N
m=0,

where N = h
Ti

.

Theorem V.1. Suppose the WCRT of a periodic task τi, calculated using Lemma V.1,

satisfies the conditions of Lemma V.2. In that case, the task is guaranteed to be schedulable

if the minimum execution window is at least as long as the WCRT of the task.

Proof. Let us assume that task τi satisfies Lemma V.2 where the WCRT, Ri, is calcu-

lated using Lemma V.1, which accounts for all the possible worst-case interference. Let

us assume that the Minimum Execution Window = Xmin. If Ri < Xmin, then using

Definition V.2, Ri < Xi,m∀0 < m ≤ h
Ti

, which says that if the WCRT of a task can be

accommodated within the minimum execution window, the task can complete execution in

all its instances. Recall that the schedulability of a task is defined as the ability to com-
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plete execution before the deadline in all the instances of the task. Hence, Theorem V.1

sufficiently proves the schedulability of any task τi.

5.4 Evaluation

In this section, we evaluate the impact of the addition of the secure reboot task on the

task set schedulability. The evaluation setup and the related codes are open-sourced and

published through GitHub [73]

5.4.1 Experimental Setup

We implemented our approach on the RTEMS RTOS [48] using Das U-Boot, a pop-

ular open-source bootloader compatible with a wide range of embedded devices. There

are two steps to implementation; the first stage occurs on a host computer, and the second

on the RTES. The U-boot bootloader is built during the first phase using user-provided

configurations supplied through an .its file. Next, the hashed image is encrypted with

RSA2048 and stored in a flattened image tree format. In addition to the flattened image

tree, the device tree and generated public key are stored in a read-only memory location

on the RTES. The second stage occurs every time the RTES is restarted. U-Boot uses the

public key obtained from stage 1 to verify the hash of the kernel image and only allows

a signature-verified image to boot. To ensure the integrity of execution, we terminate and

discard all the tasks that did not complete execution before the reboot was triggered.

For performance analysis of the proposed model, we used Theorem V.1 on a synthetic

task set that we generated using the UUnifast algorithm [74]. With a constant value for the
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hyperperiod (h = 1000), we randomly selected task periods from the set of the factors of h.

For each task τi, the WCET is calculated using Ci = Ti × Ui. We varied U from 0.1 to 0.9

in steps of 0.1. For each value of U , we generated 1000 task sets with 20 tasks in each task

set. The reboot overhead values, i.e., values for ϵ and ϵ′, used in this performance analysis

are recorded from our hardware test implementation discussed above.

5.4.2 Experiments and Results

We performed the following experiments to gain quantitative insights about the per-

formance overheads due to periodic secure reboots. We measured performance in terms of

the impact on the system’s schedulability in three different modes:

1. No reboot: Cr = 0

2. Non-secure reboot: Cr = ϵ

3. Secure-reboot: Cr = ϵ+ ϵ′

We define schedulability of a task set as the percentage of the tasks that can complete

execution before their respective deadline. For each experiment, we used an arbitrarily

fixed priority preemptive (AFPP) scheduling [70] and a rate monotonic (RM) scheduling

algorithm [75] for assigning priorities to each task in the task sets.

Experiment 1: This experiment shows the schedulability comparison of a set of

1000 task sets for each value of U with a randomly chosen fixed value of Tr from a range

of (0, h]. The reboot overheads are ϵ = 5.05 and ϵ′ = 0.02856 seconds, which are collected

from our implementation setup. Fig. 5.3 shows the impact of the periodic restart of the

complex controller. Interestingly, we observe an almost indistinguishable pattern in the
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Figure 5.3: Impact of Secure Boot on Task Set Schedulability using AFPP and RM

Scheduling. [1]

normal reboot and secure reboot traces with both AFPP and RM scheduling (see Figs. 5.3a

and 5.3b), which implies that for restart-based systems, there is no significant reduction in

schedulability by adding the secure boot sequence in the restart operation. In particular, for

the utilization range typically used in CPS (0.5 to 0.7), the maximum drop in schedulability

is approximately 0.03% for AFPP and 0.081% for RM scheduling. Hence, the secure

boot can be feasibly added for real-time systems with an existing periodic restart-based

mechanism without sacrificing schedulability.
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Experiment 2: We extend Experiment 1 further and analyze the numerical summary

from a randomly generated task set. To understand the performance trend better, we gener-

ated additional task sets and analyzed the schedulability of 50000 randomly generated tasks

using boxplots. The five-point summary (minimum, first quartile, median, third quartile,

and maximum) schedulability of all tasks shows a complete picture of the task schedulabil-

ity at the given utilization level with the same fixed values of ϵ and ϵ′ as used in Experiment

1. We used a pseudo-random number generator to assign values for Tr. Fig. 5.4 shows the

schedulability of the task set with an arbitrary value of Tr = 120. The box plot demon-

strates the relation between the system utilization and schedulability of task sets with a

constant Tr.

Experiment 3: We now examine the impact of weighted schedulability [76] as a

function of the utilization level and task schedulability at each utilization level. We define

weighted schedulability as:
∑k−1

i=0
(Ui.S(Ui,ϵ+ϵ′,Tr,m))

∑k−1

i=0
Ui

, where S(Ui, ϵ + ϵ′, Tr,m) is the schedu-

lability at utilization level Ui and Tr,m. The resulting plot in Fig. 5.5 shows that the schedu-

lability of the task is directly proportional to the reboot period. On the one hand, a longer

reboot period results in a higher frequency of the periodic reboot, which lowers the task

schedulability. On the other hand, using a lower frequency of secure reboot increases the

system’s vulnerability. We notice a pattern of sudden peak (when the Tr is a factor of h)

immediately followed by a steep drop in schedulability. This observation is because the

task periods are factors of h. The same argument can explain the steep drop: when Tr takes

values that are immediately after factors of h, every task having a period equal to a factor

of h will have an instance released and terminated due to a reboot being triggered, which

severely impacts the schedulability of the task sets for those values of Tr. From this exper-
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Figure 5.4: Impact of Secure Boot on Schedulability. [1]

iment and Experiment 1, we infer that the biggest impact on performance comes from the

reboot period, and the schedulability can be maximized by setting the reboot period as the

least common multiple of a subset of tasks. The subset of tasks can be selected based on

factors such as priority, guaranteeing the execution of high-priority tasks. The task subset

selection can also be done to execute the maximum number of tasks.

Experiment 4: In Experiments 1 and 2, we compare the schedulability with fixed

reboot overhead and fixed reboot period. In Experiment 3, we observe the impact of the

reboot period using a weighted schedulability plot with fixed reboot overhead. This exper-
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Figure 5.5: Weighted schedulability as a function of reboot period Tr. [1]

iment demonstrates the impact of adding a secure reboot over a normal reboot. Fig. 5.6

shows a linear depreciation in the schedulability as the overhead percentage of the secure

reboot increases. The plot generated from synthetic experiments shows a similar trend to

Experiment 1, where we used values from a real system. In Fig. 5.6a, the schedulabil-

ity difference with ϵ′ = 0.01 × ϵ is around 0.03% which is close to what we found in

Experiment 1. The weighted schedulability with RM scheduling in Fig. 5.6b also shows
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Figure 5.6: Schedulability as a function of the secure reboot overhead ϵ′. [1]

a comparable value of 0.1% compared to 0.08% with real system values. Hence, based

on the reboot overhead collected from hardware, the secure reboot-based mechanism has

minimal tradeoff on system schedulability.
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5.5 Summary

This chapter presents a secure boot mechanism for restart-based real-time CPS uti-

lizing the Simplex architecture. Hardware-based evaluations offer a schedulability analysis

of real-time task sets when secure boot is enabled. The experimental results demonstrate

that periodic secure boot has a minimal impact when employing fixed-priority scheduling

schemes under realistic reboot overhead conditions. This research establishes a founda-

tion for incorporating widely recognized security features, such as secure boot, into the

recovery processes of real-time systems. Future work may investigate the re-execution

of terminated tasks, explore alternative scheduling paradigms that might align better with

reboot scheduling, and consider the randomization of reboot timing.



CHAPTER VI

FUTURE WORK

This chapter presents potential future work to extend the research further and inves-

tigate the questions not addressed in this dissertation.

6.1 Improving Defense Against Side-Channels in RTES

This dissertation motivates the exploration of novel defense techniques capable of ef-

fectively safeguarding against the exploitation of standard application features for execut-

ing coordinated side-channel attacks. The adaptive execution of NOSYNEIGHBOR chal-

lenges several assumptions established in the leading attack literature by demonstrating

that it is possible to acquire precise timing information of the target system without prior

knowledge of additional system parameters.

Future research could also examine the effects of NOSYNEIGHBOR on various sched-

uler and task set models. Given that timing inference relies on the adaptability of the execu-

tion of informant tasks, different system workloads are expected to influence the outcomes

of the inference in diverse ways. Additionally, the choice of scheduler may impact the in-
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ference results, as certain schedulers may prove inherently more resilient to such adaptive

side-channel attacks. A thorough examination of the performance-security tradeoff for dif-

ferent scheduler algorithms and workload composition can provide essential insights into

improving the side-channel resilience of real-time systems.

6.2 Bypassing Trusted Execution Environment

A trusted execution environment (TEE) is a hardware-based isolation technique to

mitigate side-channel inference. This dissertation assumes that the attack target does not

have a TEE-based defense technique. However, many embedded targets are incorporating

TEE to prevent side-channel and other types of attacks.

TEE provides an isolated memory space that only allows selected tasks to run in a

secure environment. Future work can investigate extending NOSYNEIGHBOR to execute

adaptive side-channel inference against a victim task running inside a secure environment

in TEE.

6.3 Automated Selection of Software Components

The use of modularization in RTES, presented in Chapter IV, lays the ground for

future work on modularizing other software components to enable rapid patching and in-

dependent security research in each of those components.

The dissertation further motivates exploration into developing metrics that can effec-

tively quantify various software stacks’ functional and non-functional attributes. Automa-

tion tools can use such metrics to facilitate the selection of the right set of software stacks
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for each project. The metrics used in Chapter IV are based on the function requirements

related to memory and the timing overhead. These metrics can be expanded further to

calculate the overhead generated by subelements within each stack to relate the overhead

evaluation with the specific type of workload that each project or target device might need.



CHAPTER VII

CONCLUSION

This dissertation introduces a novel side-channel attack technique called NOSY-

NEIGHBOR which bypasses state-of-the-art defense mechanisms by leveraging the timing

predictability of real-time systems. This attack enables the inference of timing parame-

ters of tasks executing within separate partitions, effectively circumventing randomization-

based defenses commonly used to mitigate side-channel vulnerabilities in real-time operat-

ing systems (RTOS). The demonstrated effectiveness of NOSYNEIGHBOR particularly in

a testbed environment utilizing a Linux-based real-time operating system, underscores the

potential risks adversaries can exploit.

Supply chain attacks continue to be a prominent method for propagating threats like

NOSYNEIGHBOR with systems relying on legacy software particularly vulnerable due to

longstanding flaws and vulnerabilities inherent to the legacy components. To address this

challenge, the dissertation proposes a modularization technique known as networking-as-a-

library. This approach facilitates transitioning into an upgraded network stack by allowing
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the users to continue using legacy components through externally linked libraries. Hence,

the system downtime is minimized during the transition.

Additionally, the research strengthens the security posture of RTEMS, which is used

in multiple critical infrastructure sectors, including energy, defense, and transportation.

The dissertation establishes theoretical bounds on the feasibility of integrating a proactive

periodic recovery routine within real-time systems without compromising their real-time

properties. This proposed recovery method incorporates a secure boot process at each

system startup and ensures predictable periodic restarts, allowing the system to revert to a

safe state with bounded overhead.

All research outcomes of this dissertation are open source and freely available for

use and further research [4, 5, 73], promoting a collaborative effort to enhance security in

real-time systems against evolving threats.
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